Antognazza, M.R. 2015. The hypercategorematic infinite. Leibniz Review 25: 5–30.
Article
Google Scholar
Arthur, R.T.W. 2008. Leery Bedfellows: Newton and Leibniz on the status of infinitesimals. In (Goldenbaum and Jesseph 2008), 7–30.
Arthur, R.T.W. 2009. Actual infinitesimals in leibniz’s early thought. In The philosophy of the Young Leibniz, Studia Leibnitiana Sonderhefte, vol. 35, ed. Mark Kulstad, Mogens Laerke, and David Snyder, 11–28. Stuttgart: Franz Steiner.
Google Scholar
Arthur, R.T.W. 2013. Leibniz’s syncategorematic infinitesimals, smooth infinitesimal analysis, and second order differentials. Archive for History of Exact Sciences 67: 553–593.
MathSciNet
Article
Google Scholar
Arthur, R.T.W. 2019. Leibniz in Cantor’s paradise, chapter 3. In Leibniz and the structure of science: modern perspectives on the history of logic, mathematics, epistemology, ed. Vincenzo De Risi. Berlin: Springer.
Google Scholar
Bair, Jacques, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps, David Sherry, and Steven Shnider. 2013. Is mathematical history written by the Victors? Notices of the AMS 60 (7): 886–904.
MathSciNet
MATH
Google Scholar
Blåsjö, Victor. 2017. On what has been called Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Historia Mathematica 44 (2): 134–149.
MathSciNet
Article
Google Scholar
Bos, H.J.M. 1974–75. Differentials, higher-order differential and the derivative in the Leibnizian calculus. Archive for History of Exact sciences 14: 1–90.
Child, J.M. 1920. The early mathematical manuscripts of Leibniz. Chicago: Open Court.
MATH
Google Scholar
Cortese, João, and Rabouin, David. 2019. Sur les indivisibles chez Pascal. In Passions géométriques. Mélanges en l'honneur de D. Descotes, ed. Cousson, A., 425–440. Paris: Champion.
Google Scholar
Dutens, Louis. 1768. Gothofredi Guillielmi Leibnitii Opera Omnia. Geneva: Fratres de Tournes.
Google Scholar
Ehrlich, Philip. 2006. The rise of non-Archimedean mathematics and the roots of a misconception I: The emergence of non-Archimedean Grössensysteme. Archive for History of Exact Sciences 60 (1): 1–121.
MathSciNet
Article
Google Scholar
Erdmann, Johann Eduard. 1840. G. W. Leibniz, Opera Philosophica. Berlin: Eichler.
Google Scholar
Gerhardt, C.I. ed. 1849–63. Leibnizens Mathematische Schriften (Berlin and Halle: Asher and Schmidt; reprint ed. Hildesheim: Olms, 1971), 7 vols; cited by volume and page, e.g. GM II 316.
Gerhardt, C. I. ed. 1875–90. Die Philosophische Schriften von Gottfried Wilhelm Leibniz (Berlin: Weidmann; reprint ed. Hildesheim: Olms, 1960), 7 vols; cited by volume and page, e.g. GP II 268.
Gerhardt, C.I. 1876. Zum zweihundertjährigen Jubiläum der Entdeckung des Algorithmus der höheren Analysis durch Leibniz. Monatsberichte der Königlich Preußischen Akademie der Wissenschaften 1875: 595–608.
Google Scholar
Goethe, Norma, Philip Beeley, and David Rabouin. 2015. G. W. Leibniz: Interrelations between mathematics and philosophy. Archimedes series, vol. 41. Dordrecht: Springer.
MATH
Google Scholar
Goldenbaum, Ursula, and Douglas Jesseph (eds.). 2008. Infinitesimal differences: Controversies between Leibniz and his contemporaries. Berlin, NY: De Gruyter.
Google Scholar
Grosholz, Emily. 2007. Representation and productive ambiguity in mathematics and the sciences. Oxford: Clarendon Press.
MATH
Google Scholar
Jesseph, Douglas. 1998. The foundations of the calculus: The question of the reality of infinitesimal magnitudes. Perspectives on Science 6 (1&2): 6–40.
MathSciNet
MATH
Google Scholar
Jesseph, Douglas. 2008. Truth in fiction: Origins and consequences of Leibniz’s doctrine of infinitesimal magnitudes. In (Goldenbaum and Jesseph 2008), 215–233.
Jesseph, Douglas. 2015. Leibniz on the elimination of infinitesimals. In (Goethe, Beeley and Rabouin 2015), 189–205.
Katz, Karin, and Mikhail, Katz. 2010. When is .999… less than 1? The Montana Mathematics Enthusiast 7(1): 3–30.
Google Scholar
Katz, M., and D. Sherry. 2012. Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society 59 (11): 1550–1558.
MathSciNet
Article
Google Scholar
Katz, M., and D. Sherry. 2013. Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis 78 (3): 571–625.
MathSciNet
Article
Google Scholar
Knobloch, Eberhard. 2002. Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Synthese 133: 59–73.
MathSciNet
Article
Google Scholar
Kunen, Kenneth. 1980. Set theory. An introduction to independence proofs. Studies in logic and the foundations of mathematics, vol. 102. Amsterdam: North-Holland Publishing Company.
MATH
Google Scholar
Leibniz, G.W. 1695. Responsio ad nonnullas difficultates a dn. Bernardo Nieuwentijt circa methodum differentialem seu infinitesimalem motas. Acta Eruditorum, July, 1695, 310–316; GM V 320–326.
Leibniz, G.W. 1701. Cum prodiisset atque increbuisset Analysis mea infinitesimalis … in Leibniz 1846, 39–50.
Leibniz, G.W. 1846. Historia et Origo calculi differentialis a G. G. Leibnitzio conscripta. In ed. C. I. Gerhardt. Hanover.
Leibniz, G.W. 1923-. Sämtliche Schriften und Briefe, herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften und der Akademie der Wissenschaften zu Göttingen, Reihe 1-8, Darmstadt, Leipzig, Berlin; cited by series, volume and page, e.g. A VI 2, 229.
Leibniz, G.W. 1993. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis. Ed. and commentary by Eberhard Knobloch. Göttingen: Vandenhoek & Ruprecht.
Leibniz, G.W. 2001. The Labyrinth of the continuum: Writings on the continuum problem, 1672–1686. Ed., sel. & transl. R. T. W. Arthur. New Haven: Yale University Press; abbreviated LLC with page number.
Leibniz, G.W. 2016. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis. Ed. and German translation by Eberhard Knobloch. Berlin, Heidelberg: Springer.
Levey, Samuel. 2008. Archimedes, infinitesimals and the law of continuity: On Leibniz’s fictionalism. In (Goldenbaum and Jesseph 2008), 107–133.
Mancosu, Paulo. 1996. Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford: Oxford University Press.
MATH
Google Scholar
Mancosu, Paulo, and Ezio Vailati. 1990. Detleff Clüver: An early opponent of the Leibnizian differential calculus. Centaurus 33: 325–344.
MathSciNet
Article
Google Scholar
Pascal, Blaise. 1659. Lettres de A. Dettonville contenant Quelques-vnes de ses Inuentions de Geometrie. Paris: Guillaume Desprez.
Google Scholar
Pasini, Enrico. 1988. Die private Kontroverse des GW Leibniz mit sich selbst. Handschriften über die Infinitesimalrechnung im Jahre 1702. In Leibniz. Tradition und Aktualität. Hannover: Leibniz-Gesellschaft, 695–709.
Prestet, Jean. 1675. Elemens des mathematiques ou principes generaux de toutes les sciences qui ont les grandeurs pour objet. Paris: A. Pralard.
Rabouin, David. 2011. Infini mathématique et infini métaphysique : d’un bon usage de Leibniz pour lire Cues (… et d’autres). Revue de métaphysique et de morale 70: 203–220.
Article
Google Scholar
Rabouin, David. 2015. Leibniz’s rigorous foundations of the method of indivisibles, or how to reason with impossible notions. In Seventeenth-century indivisibles revisited, ed. Vincent Jullien, (Science Networks. Historical Studies, vol. 49), Cham, Switzerland: Birkhäuser, 347–364.
Robinet, André. 1991. Correspondance Leibniz-Clarke, 2nd ed. France: Presses Universitaires.
Google Scholar
Robinson, Abraham. 1966. Non-standard analysis. Princeton University Press, 1st ed. 1966, revised edition 1996.
Sherry, David, and Mikhail G. Katz. 2012. Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana 44: 166–192.
Google Scholar
Tho, Tzuchien. 2012. Equivocation in the foundations of Leibniz’s infinitesimal fictions. Society and Politics VI (2): 63–87.
Google Scholar
Uckelman, Sara L. 2015. The logic of categorematic and syncategorematic infinity. Synthese 192: 2361–2377.
MathSciNet
Article
Google Scholar
Whiteside, Derek Thomas. 1968. Patterns of mathematical thoughts in the later seventeenth century. Archive for history of exact sciences 1: 179–388.
Article
Google Scholar