Archive for History of Exact Sciences

, Volume 72, Issue 2, pp 191–243 | Cite as

An analysis of medieval solar theories

  • S. Mohammad Mozaffari


From Antiquity through the early modern period, the apparent motion of the Sun in longitude was simulated by the eccentric model set forth in Ptolemy’s Almagest III, with the fundamental parameters including the two orbital elements, the eccentricity e and the longitude of the apogee λA, the mean motion ω, and the radix of the mean longitude \( \bar{\lambda }_{0} \). In this article we investigate the accuracy of 11 solar theories established across the Middle East from 800 to 1600 as well as Ptolemy’s and Tycho Brahe’s, with respect to the precision of the parameter values and of the solar longitudes λ that they produce. The theoretical deviation due to the mismatch between the eccentric model with uniform motion and the elliptical model with Keplerian motion is taken into account in order to determine the precision of e and λA in the theories whose observational basis is available. The smallest errors in the eccentricity are found in these theories: the Mumtaḥan (830): − 0.1 × 10−4, Bīrūnī (1016): + 0.4 × 10−4, Ulugh Beg (1437): − 0.9 × 10−4, and Taqī al-Dīn (1579): − 1.1 × 10−4. Except for al-Khāzinī (1100, error of ~ + 21.9 × 10−4, comparable to Ptolemy’s error of ~ + 33.8 × 10−4), the errors in the medieval determinations of the solar eccentricity do not exceed 7.7 × 10−4 in absolute value (Ibn al-Shāṭir, 1331), with a mean error μ = + 2.57 × 10−4 and standard deviation σ = 3.02 × 10−4. Their precision is remarkable not only in comparison with the errors of Copernicus (− 7.8 × 10−4) and Tycho (+ 10.2 × 10−4), but also with the seventeenth-century measurements by Cassini–Flamsteed (− 2.4 × 10−4) and Riccioli (+ 5.5 × 10−4). The absolute error in λA varies from 0.1° (Taqī al-Dīn) to 1.9° (al-Khāzinī) with the mean absolute error MAE = 0.87°, μ = −0.71° and σ = 0.65°. The errors in λ for the 13,000-day ephemerides show MAE < 6′ and the periodic variations mostly remaining within ± 10′ (except for al-Khāzinī), closely correlated with the accuracy of e and λA.



The author extend his sincerest thanks to Benno van Dalen (Germany), Julio Samsó (Spain), and Noel Swerdlow (United States) for their encouragements and kind helps. The solar longitudes in this article have been computed with the aid of van Dalen’s very useful PC program Historical Horoscopes. This work has been financially supported by the Research Institute for Astronomy and Astrophysics of Maragha (RIAAM) under research project No. 1/5440-57.


  1. Bearman, P., Bianquis, Th., Bosworth, C.E., van Donzel, E., and Heinrichs, W.P., 1960–2005. [EI 2:] Encyclopaedia of Islam, 2nd edn., 12 vols. Leiden: Brill.Google Scholar
  2. Bernard, Edward. 1684. The Observations of the Ancients Concerning the Obliquity of the Zodiac, in a Letter of Mr. Edward Bernard to Mr. John Flamsteed Math. Reg. Philosophical Transactions of the Royal Society 14: 721–725.CrossRefGoogle Scholar
  3. al-Battānī, Abū ‘Abd-Allāh Muḥammad b. Jābir b. Sinān al-Ḥarrānī, Zīj al-Ṣābi’ (The Sabean Zīj), MS. E: Biblioteca Real Monasterio de San Lorenzo de el Escorial, no. árabe 908 (also, see Nallino [1899–1907] 1969). Translated into Latin by Plato of Tivoli in Barcelona in the 12th century, printed twice, in Nuremberg in 1537 (with Farghānī’s work) and in Bologna in 1645.Google Scholar
  4. al-Bīrūnī, Abū al-Rayḥān, 1954–1956. al-Qānūn al-mas‘ūdī (Mas‘ūdīc canons), 3 vols. Hyderabad: Osmania Bureau.Google Scholar
  5. Brahe, T., 1913–1929. Tychonis Brahe Dani Opera Omnia, ed. J.L.E. Dreyer, 15 vols. Copenhagen: Libraria Gyldendaliana.Google Scholar
  6. Bullialdus, Ismaël, 1645. Astronomia Philolaica. Paris.Google Scholar
  7. Caussin de Perceval, J.-J.-A. 1804. Le livre de la grande table hakémite, Observée par le Sheikh,…, ebn Iounis. Notices et Extraits des Manuscrits de la Bibliothèque nationale 7: 16–240.Google Scholar
  8. Chabás, J., and B.R. Goldstein. 2003. The Alfonsine tables of Toledo. Dordrecht: Kluwer Academic Publishers.CrossRefzbMATHGoogle Scholar
  9. Copernicus, N., 1543. De revolutionibus orbium coelestium, Nuremberg. On the Revolutions of the Heavenly Spheres, Wallis, C.G. (tr.), Annapolis: St John’s College Bookstore, 1939. Rep. The Great Books of the Western World, 2nd edn. Chicago: Encyclopædia Britannica, 1990, vol. 15.Google Scholar
  10. Calvo, Emilia. 1998. Astronomical Theories Related to the Sun in Ibn al-Hā’im’s al-Zīj al-Kāmil fī’l-Ta‘ālīm. Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften 12: 51–111.MathSciNetzbMATHGoogle Scholar
  11. Debarnot, M.-T. 1987. The Zīj of Ḥabash al-Ḥāsib: A Survey of MS Istanbul Yeni Cami 784/2. In From Deferent to Equant: A Volume of Studies on the History of Science of the Ancient and Medieval Near East in Honor of E. S. Kennedy, eds. Saliba, G. and King, D. A., 1987, vol. 500, 35–69. Annals of the New York Academy of Sciences.Google Scholar
  12. Delambre, M. 1819. Histoire de l’Astronomie du Moyen Age. Paris: Courcier.zbMATHGoogle Scholar
  13. Dreyer, J.L.E. 1890. Tycho Brahe: A Picture of Scientific Life and Work in the Sixteenth Century. Edinburgh: Adam and Charles Black.zbMATHGoogle Scholar
  14. Duke, D. 2008. Four Lost Episodes in Ancient Solar Theory. Journal for the History of Astronomy 39: 283–296.CrossRefGoogle Scholar
  15. Flamsteed, John. 1674a. Johannis Flamstedii derbiensis angli ad clarissimum Cassinum epistola, novas observationes extimarum elongationum siderum Medicæorum à centro jovis, novâ sed & accuaratâ ratione habitas, exhibens; adjectis quibusdam observationibus non-vulgaribus, planetarum diametros & à fixis distantias, nec non martis acronici & perigei parallaxin, &c spectantibus. Philosophical Transactions of the Royal Society 8: 6094–6000.Google Scholar
  16. Flamsteed, John. 1674b. Extracts of Two Letters, Written by Mr. Flamsteed to Mr. Collins …. Philosophical Transactions of the Royal Society 9: 219–221.CrossRefGoogle Scholar
  17. Gillipsie, C.C. et al. (ed.), 1970–1980. [DSB:] Dictionary of Scientific Biography, 16 vols. New York: Charles Scribner’s Sons.Google Scholar
  18. Goldstein, B.R., and J. Chabás. 2001. The Maximum Solar Equation in the Alfonsine Tables. Journal for the History of Astronomy 32: 345–348.MathSciNetCrossRefGoogle Scholar
  19. Grasshoff, G. 1990. The History of Ptolemy’s Star Catalogue. New York: Springer.CrossRefzbMATHGoogle Scholar
  20. Ḥabash al-Ḥāsib, The zīj of Ḥabash al -Ḥāsib, MSS. B: Berlin, Ahlwardt 5750 (formerly Wetzstein I 90); I: Istanbul, Süleymaniye, Yeni Cami, no. 784.Google Scholar
  21. Hartner, W. 1977. The Role of Observations in Ancient and Medieval Astronomy. Journal for the History of Astronomy 8: 1–11.MathSciNetCrossRefGoogle Scholar
  22. Hartner, W. 1980. Ptolemy and Ibn Yūnus on Solar Parallax. Archives Internationales d’Histoire des Sciences 30: 5–26.MathSciNetGoogle Scholar
  23. Hartner, W. and Schramm, M. 1961. Al-Bīrūnī and the Theory of the Solar Apogee: An Example of Originality in Arabic Science. In Scientific Change. Historical Studies in the Intellectual, Social and Technical Conditions for Scientific Discovery and Technical Invention, from Antiquity to the Present, ed. A.C. Crombie. Symposium on the History of Science, University of Oxford 9–15 July 1961), London: Heinemann, 206–218.Google Scholar
  24. Hockey, T., et al. (eds.). 2007. [BEA:] The Biographical Encyclopedia of Astronomers. Berlin: Springer.Google Scholar
  25. Hornsby, Thomas. 1763. A Discourse on the Parallax of the Sun. Philosophical Transactions of the Royal Society 53: 467–495.CrossRefGoogle Scholar
  26. Ibn al-Shāṭir, ‘Alā’ al-Dīn Abu’l-Ḥasan ‘Alī b. Ibrāhīm b. Muḥammad al-Muṭa‘‘im al-Anṣārī, al-Zīj al-Jadīd, MSS. K: Istanbul, Kandilli Observatory, no. 238, O: Oxford, Bodleian Library, no. Seld. A inf 30, D: Damascus, Asad National library, no. 3093; L1: Leiden, Universiteitsbibliotheek, no. Or. 65; L2: Leiden, Universiteitsbibliotheek, Or. 530; PR: Princeton, Princeton University Library, no. Yahuda 145.Google Scholar
  27. Ibn Yūnus, ‘Alī b. ‘Abd al-Raḥmān b. Aḥmad, Zīj al-kabīr al -Ḥākimī, MSS. L: Leiden, Universiteitsbibliotheek, no. Or. 143, O: Oxford, Bodleian Library, no. Hunt 331, F1: Paris, Bibliothèque Nationale, no. Arabe 2496 (formerly, arabe 1112; copied in 973 H/1565–1566 AD), F2: Paris, Bibliothèque Nationale, no. Arabe 2495 (formerly, arabe 965; the 19th-century copy of MSS. L and the additional fragments in F1).Google Scholar
  28. Jones, Alexander. 1991. Hipparchus’s Computations of Solar Longitudes. Journal for the History of Astronomy 22: 101–125.MathSciNetCrossRefGoogle Scholar
  29. al-Kamālī, Muḥammad b. Abī ‘Abd-Allāh Sanjar (Sayf-i munajjim), Ashrafī zīj, MSS. F: Paris, Bibliothèque Nationale, no. 1488, G: Iran–Qum: Gulpāyigānī, no. 64731.Google Scholar
  30. al-Kāshī, Jamshīd Ghiyāth al-Dīn, Sullam al-samā’, MS. Iran: National Library, no. 1174059, ff. 1v–15v (copied in Rajab 1277/January–February 1861).Google Scholar
  31. al-Kāshī, Jamshīd Ghiyāth al-Dīn, Khāqānī zīj, MS. IO: London: India Office, no. 430; P: Iran: Parliament Library, no. 6198.Google Scholar
  32. al-Khāzinī, ‘Abd al-Raḥmān, al-Zīj al-mu‘tabar al-sanjarī, MSS. V: Vatican, Biblioteca Apostolica Vaticana, no. Arabo 761, L: London, British Linbrary, no. Or. 6669; Wajīz [Compendium of] al-Zīj al-mu‘tabar al-sanjarī, MSS. I: Istanbul, Süleymaniye Library, Hamidiye collection, no. 859; S: Tehran: Sipahsālār, no. 682.Google Scholar
  33. Kennedy, E.S. 1956. A Survey of Islamic Astronomical Tables. Transactions of the American Philosophical Society, New Series 46: 123–177.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Kennedy, E.S. 1960. The Planetary Equatorium of Jamshīd Ghiyāth al-Dīn al-Kāshī. Princeton: Princeton University Press.Google Scholar
  35. Kennedy, E.S. 1977. The Astronomical Tables of Ibn al-A‘lam. Journal for the History of Arabic Science 1: 13–23.MathSciNetGoogle Scholar
  36. Kennedy, E.S., and D. Pingree (eds.). 1981. The Book of the Reasons Behind Astronomical Tables. New York: Scholars’ Facsimiles & Reprints.Google Scholar
  37. Kepler, J., 1570–1858. Joannis Kepleri Astronomi Opera Omnia, ed. Ch. Frisch, 8 vols. Frankfurt-Erlangen.Google Scholar
  38. King, D.A., 1999. Aspects of Fatimid Astronomy: From Hard-Core Mathematical Astronomy to Architectural Orientations in Cairo. In L’Égypte Fatimide: son art et son histoireActes du colloqie organisé à Paris les 28, 29 et 30 mai 1998, ed. M. Barrucand. Paris: Presses de l’Université de Paris-Sorbonne, 497–517. Rep. ed. King, D.A. 2012. Islamic Astronomy and Geography. Berlin: Farnham–Burlington, Trace IV.Google Scholar
  39. King, D. A., 2004/5. In Synchrony with the Heavens; Studies in Astronomical Timekeeping and Instrumentation in Medieval Islamic Civilization, 2 vols. Leiden-Boston: Brill.Google Scholar
  40. King, D.A., J. Samsó, and B.R. Goldstein. 2001. Astronomical Handbooks and Tables from the Islamic World (750–1900): An Interim Report. Suhayl 2: 9–105.MathSciNetzbMATHGoogle Scholar
  41. Koertge, N., 2008. [NDSB:] New Dictionary of Scientific Biography, 8 vols. Detroit: Charles Scribner’s Sons.Google Scholar
  42. Krisciunas, K. 1994. A More Complete Analysis of the Errors in Ulugh Beg’s Star Catalogue. Journal for the History of Astronomy 24: 269–280.CrossRefGoogle Scholar
  43. Knobel, E.B. 1917. Ulugh Beg’s Catalogue of Stars. Washington: Carnegie.Google Scholar
  44. al-Maghribī, Mūḥyī al-Dīn, Adwār al-anwār, MS. M: Iran, Mashhad, Holy Shrine Library, no. 332; MS. CB: Ireland, Dublin, Chester Beatty, no. 3665.Google Scholar
  45. al-Maghribī, Mūḥyī al-Dīn, Talkhīṣ al-majisṭī, MS. Leiden: Universiteitsbibliotheek, Or. 110.Google Scholar
  46. Maeyama, Y. 1998. Determination of the Sun’s Orbit. Hipparchus, Ptolemy, al-Battânî, Copernicus, Tycho Brahe. Archive for History of Exact Sciences 53: 1–49.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Meeus, Jean. 2002. More Mathematical Astronomy Morsels. Richmond: William-Bell.zbMATHGoogle Scholar
  48. Mercier, R.P. 1989. The Parameters of the Zīj of Ibn al-A‘lam. Archives Internationales d’Histoire des Sciences 39: 22–50.zbMATHGoogle Scholar
  49. Moesgaard, Kristian Peder. 1974. Thābit ibn Qurra Between Ptolemy and Copernicus: An Analysis of Thābit’s Solar Theory. Archive for History of Exact Sciences 12: 199–216.MathSciNetCrossRefzbMATHGoogle Scholar
  50. Moesgaard, Kristian Peder. 1975. Tychonian Observations, Perfect Numbers, and the Date of Creation: Longomontanus’s Solar and Precessional Theories. Journal for the History of Astronomy 6: 84–99.MathSciNetCrossRefGoogle Scholar
  51. Mozaffari, S. Mohammad, 2013. Limitations of Methods: The Accuracy of the Values Measured for the Earth’s/Sun’s Orbital Elements in the Middle East, A.D. 800 and 1500. Journal for the History of Astronomy Part 1: 44(3), 313–336, Part 2: 44(4), 389–411.Google Scholar
  52. Mozaffari, S. Mohammad. 2014. Muḥyī al-Dīn al-Maghribī’s Lunar Measurements at the Maragha observatory. Archive for History of Exact Sciences 68: 67–120.CrossRefzbMATHGoogle Scholar
  53. Mozaffari, S. Mohammad. 2016a. A Medieval Bright Star Table: The Non-Ptolemaic Star Table in the Īlkhānī Zīj. Journal for the History of Astronomy 47: 294–316.CrossRefGoogle Scholar
  54. Mozaffari, S. Mohammad. 2016b. A Forgotten Solar Model. Archive for History of Exact Sciences 70: 267–291.CrossRefGoogle Scholar
  55. Mozaffari, S. Mohammad. 2016c. Planetary latitudes in medieval Islamic astronomy: an analysis of the non-Ptolemaic latitude parameter values in the Maragha and Samarqand astronomical traditions. Archive for History of Exact Sciences 70: 513–541.Google Scholar
  56. Mozaffari, S. Mohammad, 2016–2017. A Revision of the Star Tables in the Mumtaḥan zīj. Suhayl 15: 67–100.Google Scholar
  57. Mozaffari, S. Mohammad. 2017. Holding or Breaking with Ptolemy’s Generalization: Considerations About the Motion of the Planetary Apsidal Lines in Medieval Islamic Astronomy. Science in Context 30: 1–32.CrossRefGoogle Scholar
  58. Mozaffari, S. Mohammad, and Georg Zotti. 2013. The Observational Instruments at the Maragha Observatory after AD 1300. Suhayl 12: 45–179.Google Scholar
  59. Mozaffari, S.M., and G. Zotti. 2015. Bīrūnī’s Telescopic-Shape Instrument for Observing the Lunar Crescent. Suhayl 14: 167–188.Google Scholar
  60. Mozaffari, S.M., and J.M. Steele. 2015. Solar and Lunar Observations at Istanbul in the 1570s. Archive for History of Exact Sciences 69: 343–362.MathSciNetCrossRefzbMATHGoogle Scholar
  61. Nallino, C.A. (ed.), [1899–1907] 1969, Al-Battani sive Albatenii Opus Astronomicum. Publicazioni del Reale osservatorio di Brera in Milano, n. XL, pte. I–III, Milan: Mediolani Insubrum. The Reprint of Nallino’s edition: Minerva, Frankfurt, 1969.Google Scholar
  62. Neugebauer, O. 1962. Thabit ben Qurra “On the Solar Year” and “On the Motion of the Eighth Sphere. Proceedings of the American Philosophical Society 106: 264–299.Google Scholar
  63. Neugebauer, O. 1975. A History of Ancient Mathematical Astronomy. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  64. Newton, R.R. 1973. The Authenticity of Ptolemy’s Parallax Data—Part 1. Quarterly Journal of the Royal Astronomical Society 14: 367–388.Google Scholar
  65. Pedersen, O., 1974. A Survey of Almagest. Odense: Odense University Press, 1974. With Annotation and New Commentary by A. Jones, New York: Springer, 2010.Google Scholar
  66. Petersen, Viggo M., and Olaf Schmidt. 1968. The Determination of the Longitude of the Apogee of the Orbit of the Sun according to Hipparchus and Ptolemy. Centaurus 12: 73–96.MathSciNetCrossRefzbMATHGoogle Scholar
  67. Piini, Ernest W. 1986. Ulugh Beg’s Forgotten Observatory. Sky and Telescope 71: 542–544.Google Scholar
  68. Qūshčī, ‘Alī b. Muḥammad, Sharḥ-i Zīj-i Ulugh Beg (Commentary on the Zīj of Ulugh Beg), MSS. N: Iran, National Library, no. 20127–5, P: Iran, Parliament Library, no. 6375/1, PN: USA, Rare Book & Manuscript Library of University of Pennsylvania, no. LJS 400.Google Scholar
  69. Riccioli, Giovanni Battista, 1665. Astronomia reformata, 2 vols. Bologna.Google Scholar
  70. Roberts, Victor. 1957. The Solar and Lunar Theory of Ibn ash-Shāṭir. A Pre-Copernican Copernican Model. Isis 48: 428–432.CrossRefzbMATHGoogle Scholar
  71. Rosenfeld, B.A., İhsanoğlu, E., 2003. Mathematicians, Astronomers, and Other Scholars of Islamic Civilization and Their Works (7th-19th c.), Istanbul: IRCICA.Google Scholar
  72. Said, S.S., and F.R. Stephenson. 1995. Precision of Medieval Islamic Measurements of Solar Altitudes and Equinox Times. Journal for the History of Astronomy 26: 117–132.MathSciNetCrossRefGoogle Scholar
  73. Saliba, G., 1985. Solar Observations at Maragha observatory. Journal for the History of Astronomy 16: 113–122. Rep. Saliba 1994, 177–186.Google Scholar
  74. Saliba, G., 1987. The Role of the Almagest Commentaries in Medieval Arabic Astronomy: A Preliminary Survey of Ṭūsī’s Redaction of Ptolemy’s Almagest. Archives lnternationales d’Histoire des Sciences 37: 3–20. Rep. Saliba 1994, 143–60.Google Scholar
  75. Saliba, G. 1994. A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam. New York: New York University.zbMATHGoogle Scholar
  76. Samsó, Julio. 1987. Al-Zarqal, Alfonso X and Peter of Aragon on the Solar Equation. In From Deferent to Equant: A Volume of Studies on the History of Science of the Ancient and Medieval Near East in Honor of E. S. Kennedy, eds. Saliba, G. and King, D. A., vol. 500, 467–476. Annals of the New York Academy of Sciences.zbMATHGoogle Scholar
  77. Samsó, Julio. 2011. Las Ciencias de los Antiguos en al-Andalus, 2nd ed. Almería: Fundación Ibn Ṭufayl.Google Scholar
  78. Samsó, J., and E. Millás, 1989. Ibn al-Bannā’, Ibn Isḥāq, and Ibn al-Zarqāllu’s Solar Theory. In Islamic Astronomy and Medieval Spain, ed. Samsó, Julio. 1994. . Variorum: Ashgate. Trace X.Google Scholar
  79. Sanjufīnī, Sanjufīnī Zīj, MS. Paris: Bibliothèque Nationale, no. Arabe 6040.Google Scholar
  80. Seemann, H.J., 1929. Die Instrumente der Sternwarte zu Marāgha nach den Mitteilungen von al-‘Urḍī” in Sitzungsberichte der Physikalisch-medizinischen Sozietät zu Erlangen, ed. Oskar Schulz, vol. 60 (1928), 15–126. Erlangen: Kommissionsverlag von Max Mencke, 1929.Google Scholar
  81. Sezgin, F., 1978. Geschichte des arabischen Schrifttums, Band VI: Astronomie bis ca. 430 H. Leiden: Brill.Google Scholar
  82. Sezgin, F., and E. Neubauer, 2010. Science and technology in Islam, 5 vols. Frankfurt: Institut für Geschichte der Arabisch–Islamischen Wissenschaften.Google Scholar
  83. Shevchenko, M. 1990. An Analysis of Errors in the Star Catalogues of Ptolemy and Ulugh Beg. Journal for the History of Astronomy 21: 187–201.MathSciNetCrossRefGoogle Scholar
  84. Simon, J.L., P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou, and J. Laskar. 1994. Numerical Expressions for Precession Formulae and Mean Elements for the Moon and the Planets. Astronomy & Astrophysics 282: 663–683.Google Scholar
  85. Standish, E.M., 1998. JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL Interoffice Memorandum 312.F-98-048.Google Scholar
  86. Swerdlow, N.M. 1972. Al-Battānī’s Determination of the Solar Distance. Centaurus 17: 97–105.MathSciNetCrossRefzbMATHGoogle Scholar
  87. Swerdlow, N.M. 1973. The Derivation and First Draft of Copernicus’s Planetary Theory: A Translation of the Commentariolus with Commentary. Proceedings of the American Philosophical Society 117: 423–512.Google Scholar
  88. Swerdlow, N.M. 1975. On Copernicus’ Theory of Precession. In The Copernican Achievement, ed. R. Westman. Berkeley: University of California Press.Google Scholar
  89. Swerdlow, N.M. 2010. Tycho, Longomontanus, and Kepler on Ptolemy’s Solar Observations and Theory, Precession of the Equinoxes, and Obliquity of the Ecliptic. In Ptolemy in perspective (Archimedes, 23), ed. A. Jones, 151–202. Dordrecht: Springer.CrossRefGoogle Scholar
  90. Swerdlow, N.M., and O. Neugebauer. 1984. Mathematical Astronomy in Copernicus’s De Revolutionibus. New York: Springer.CrossRefzbMATHGoogle Scholar
  91. Taqī al-Dīn Muḥammad b. Ma‘rūf, Sidrat muntaha’l-afkar fī malakūt al-falak al-dawwār (The Lotus Tree in the Seventh Heaven of Reflection) or Shāhanshāhiyya Zīj, MSS. K: Istanbul, Kandilli Observatory, no. 208/1 (up to f. 48v; autograph); N: Istanbul, Süleymaniye Library, Nuruosmaniye Collection, no. 2930; V: Istanbul, Süleymaniye Library, Veliyüddin Collection, no. 2308/2 (from f. 10v).Google Scholar
  92. Taqī al-Dīn Muḥammad b. Ma‘rūf, Kharīdat al-durar wa jarīdat al-fikar (The non-bored pearls and the arrangement of ideas), MSS. B: Berlin, Staatsbibliothek zu Berlin, no. Ahlwardt 5699 = WE. 193; C1: Cairo, Dār al-Kutub, Ṭal‘at Mīqāt Collection, no. 900; C2: Cairo, Dar al-Kutub, Ṭal‘at Mīqāt Collection, no. 76; E: Istanbul, Süleymaniye, Esad Efendi Collection, no. 1976; K: Kandilli Observatory, no. 183.Google Scholar
  93. Thoren, V.E., and J.R. Christianson. 1990. The Lord of Uraniborg: A Biography of Tycho Brahe. Cambridge: Cambridge University Press.Google Scholar
  94. Thurston, H. 2002. Greek Mathematical Astronomy Reconsidered. Isis 93: 58–69.MathSciNetCrossRefzbMATHGoogle Scholar
  95. Toomer, G.J. 1969. The Solar Theory of az-Zarqāl: A History of Errors. Centaurus 14: 306–336.MathSciNetCrossRefzbMATHGoogle Scholar
  96. Toomer, G.J. 1987. The Solar Theory of Az-Zarqal: An Epilogue. Saliba and King 1987: 513–519.MathSciNetzbMATHGoogle Scholar
  97. Toomer, G.J. (ed.). 1998. Ptolemy’s Almagest. Princeton: Princeton University Press.Google Scholar
  98. al-Ṭūsī, Naṣīr al-Dīn, Taḥrīr al-majisṭī (Exposition of the Almagest), MSS. Iran, Parliament Library, P1: no. 3853, P2: no. 6357, P3: no. 6395.Google Scholar
  99. Ulugh Beg, Sulṭānī Zīj, MS. P1: Iran, Parliament Library, no. 72; MS. P2: Iran, Parliament Library, no. 6027.Google Scholar
  100. Van Helden, A. 1985. Measuring the Universe; Cosmic Distances from Aristarchus to Halley. Chicago: The University of Chicago Press.Google Scholar
  101. van Dalen, B., 2002a. Islamic and Chinese Astronomy Under the Mongols: A Little-Known Case of Transmission. In From China to Paris: 2000 years Transmission of Mathematical Ideas, eds. Dold-Samplonius, Y., J.W. Dauben, M. Folkerts, and B. van Dalen, 327–356. Stuttgart: Franz Steiner.Google Scholar
  102. van Dalen, B. 2002b. Islamic Astronomical Tables in China: The Sources for the Huihui li. In History of Oriental Astronomy; Proceedings of the Joint Discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997, ed. Ansari, S.M.R., 2002, 19–30. Dordrecht: Springer.Google Scholar
  103. Verbunt, F., and R.H. van Gent. 2012. The Star Catalogues of Ptolemaios and Ulugh Beg; Machine-Readable Versions and Comparison with the Modern HIPPARCOS Catalogue. Astronomy & Astrophysics 544: A31.CrossRefGoogle Scholar
  104. Wesley, W.G. 1979. Tycho Brahe’s Solar Observations. Journal for the History of astronomy 10: 96–101.MathSciNetCrossRefGoogle Scholar
  105. Wilson, Curtis. 1969. The Error in Kepler’s Acronychal Data for Mars. Cantaurus 13: 263–268.CrossRefzbMATHGoogle Scholar
  106. Yabuuti, K. 1987. The Influence of Islamic Astronomy in China. Saliba and King 1987: 547–559.MathSciNetzbMATHGoogle Scholar
  107. Yabuuti, K. 1997. “Islamic Astronomy in China during the Yuan and Ming Dynasties” tr. and Partially Revised by Benno van Dalen. Historia Scientiarum 7: 11–43.MathSciNetzbMATHGoogle Scholar
  108. Yaḥyā b. Abī Manṣūr, Zīj al-mumtaḥan, MS. E: Madrid, Library of Escorial, no. árabe 927, published in The verified astronomical tables for the caliph al-Ma’mūn, Sezgin, F. (ed.) with an introduction by Kennedy E. S., Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1986, MS. L: Leipzig, Universitätsbibliothek, no. Vollers 821.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute for Astronomy and Astrophysics (RIAAM)MaraghaIran

Personalised recommendations