Archive for History of Exact Sciences

, Volume 72, Issue 1, pp 1–20 | Cite as

The first Copernican was Copernicus: the difference between Pre-Copernican and Copernican heliocentrism

  • Christián C. Carman


It is well known that heliocentrism was proposed in ancient times, at least by Aristarchus of Samos. Given that ancient astronomers were perfectly capable of understanding the great advantages of heliocentrism over geocentrism—i.e., to offer a non-ad hoc explanation of the retrograde motion of the planets and to order unequivocally all the planets while even allowing one to know their relative distances—it seems difficult to explain why heliocentrism did not triumph over geocentrism or even compete significantly with it before Copernicus. Usually, scholars refer to explanations of sociological character. In this paper, I offer a different explanation: that the pre-Copernican heliocentrism was essentially different from the Copernican heliocentrism, in such a way that the adduced advantages of heliocentrism can only be attributed to Copernican heliocentrism, but not to pre-Copernican heliocentrism proposals.



I would like to thank Alexander Jones, Dennis Duke, Daniel Blanco, Ignacio Silva, Anibal Szapiro, Diego Pelegrin, Gustavo Zelioli and Gonzalo Recio for discussing previous versions of this paper.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Barnes, Jonathan. 1995. The Complete Works of Aristotle. The Revised Oxford translation. One Volume, Digital Edition. Princeton: Princeton University Press.Google Scholar
  2. Basham, Arthur L. 1954. The Wonder that was India: A Survey of the Culture of the Indian Sub-Continent Before the Coming of the Muslims. London: Sidgwick & Jackson.Google Scholar
  3. Bergk, Th. 1883. Fünf Abhandlungen zur Geschichte der griechischen Philosophie und Astronomie. Leipzig: R. Reisland.Google Scholar
  4. Böckh, A. 1852. Untersuchungen Über das kosmische System des Platon Berlin. Leipzig: Veit & Comp.Google Scholar
  5. Boter, Gerard J. 2007. A Textual Problem in Archimedes. Arenarius 218,14 Heiberg. Rheinisches Museum für Philologie, 150. Bd., H. 3/4: 424–429.Google Scholar
  6. Brandis, Christianus A. 1836. Scholia in Aristotelem. Berolini: Georgium Reimerum.Google Scholar
  7. Carman, Christián. 2010. On the Determination of Planetary Distances in the Ptolemaic System. International Studies in the Philosophy of Science 24 (3): 257–265.CrossRefGoogle Scholar
  8. Clark, Walter E. 1930. The \(\bar{{\rm A}}\) ryabhaṭiya of \(\bar{{\rm A}}\) ryabhaṭa. An Ancient Indian Work on Mathematics and Astronomy. Chicago: The University of Chicago Press.Google Scholar
  9. Clavius, Chirstoph. 1570. In Sphaeram Joannis de Sacrobosco Commentarius. Rome: Victorium Helianum.Google Scholar
  10. Dicks, D.R. 1970. Early Greek astronomy to Aristotle. Ithaca: Cornell University Press.Google Scholar
  11. Diels, H. 1879. Doxographi Graeci. Berlin: G. Reimer.Google Scholar
  12. Laertius, Diogenes. 1935. Lives of Eminent Philosophers, Volume II, Books 6–10 with an English translation by R. D. Hicks (Loeb Classical Library No. 185). London: William Heinemann.Google Scholar
  13. Donahue, William H. 2000. Kepler’s Optics: Paralipomena to Witelo and the Optical Part of Astronomy. Fredericksburg: Sheridan Books.Google Scholar
  14. Dreyer, J.L. 1953 A History of Astronomy from Thales to Kepler. Second edition, originally published as History of the Planetary Systems from Thales to Kepler. 1905. New York: Dover.Google Scholar
  15. Duhem, P. 1908. To Save the Phenomena: An Essay on the Idea of Physical Theory from Plato to Galileo. Chicago: University of Chicago Press.Google Scholar
  16. Duhem, Pierre. 1915. Le système du monde; histoire des doctrines cosmologiques de Platon à Copernic, A. Paris: Hermann.zbMATHGoogle Scholar
  17. Dupuis, J. 1892. \(\Theta {\rm E}\Omega {\rm N}{\rm O}\Sigma \quad \Sigma {\rm M}\Upsilon {\rm P}{\rm N}{\rm A}{\rm I}{\rm O}\Upsilon \quad \Pi \Lambda {\rm A}{\rm T}\Omega {\rm N}{\rm I}{\rm K}{\rm O}\Upsilon \quad {\rm T}\Omega {\rm N} \quad {\rm K}{\rm A}{\rm T}{\rm A} \quad {\rm T}{\rm O} \quad {\rm M}{\rm A}\Theta \) HMATIKON \({\rm X}{\rm P}{\rm H}\Sigma {\rm I}{\rm M}\Omega {\rm N} \quad {\rm E}{\rm I}\Sigma \quad {\rm T}{\rm H}{\rm N} \quad \Pi \Lambda {\rm A}{\rm T}\Omega {\rm N}{\rm O}\Sigma \quad {\rm A}{\rm N}{\rm A}\Gamma {\rm N}\Omega \Sigma {\rm I}{\rm N}\). Théon de Smyrne philosophe platonicien exposition des connaissances mathématiques utiles pour la lecture de Platon. Paris: Hachette.Google Scholar
  18. Dutta, Amartya K. 2006. \(\bar{{\rm A}}\)ryabhata and Axial Rotation of Earth 3. A Brief History. Resonance 11 (5): 58–72.CrossRefGoogle Scholar
  19. Eastwood, B. 1992. Heraclides and Heliocentrism—Texts Diagrams and Interpretations. Journal for the History of Astronomy 23 (4): 233–260.MathSciNetCrossRefGoogle Scholar
  20. Eastwood, B. 2000. Astronomical Images and Planetary Theory in Carolingian Studies of Martianus Capella. Journal for History of Astronomy xxxi: 1–28.MathSciNetCrossRefGoogle Scholar
  21. Eastwood, B. 2001. Johannes Scottus Eriugena, Sun-Centered Planets, and Carolingian Astronomy. Journal for History of Astronomy xxxii: 281–324.CrossRefGoogle Scholar
  22. Eastwood, B. 2003. Planetary Diagramas-Descriptions, Models, Theories. In Bruce Eastwood y Gerd Graßhoff. Birkhäuser Basel: The Power of Images in Early Modern Science.Google Scholar
  23. Evans, J. 1998. The History and Practice of Ancient Astronomy. Oxford: Oxford University Press.Google Scholar
  24. Evans, J., and J.L. Berggren. 2006. Geminus’s Introduction to the Phenomena: A Translation and Study of a Hellenistic Survey of Astronomy. Princeton: Princeton University Press.Google Scholar
  25. Festugière, A.J. 1968. Proclus, Commentaire sur le Timée. Tome Quatrième-Livre IV. Paris: Libraire Philosophique J. Vrin.Google Scholar
  26. Gingerich, Owen. 1985. Did Copernicus Owe a Debt to Aristarchus? Journal for the History of Astronomy xvi: 37–42.MathSciNetCrossRefGoogle Scholar
  27. Gottschalk, H. 1980. Heraclides of Pontus. New York: Oxford University Press.Google Scholar
  28. Hamellius, Paschasius. 1557. Commentarius in Archimedis Syracusani praeclari matheatici librum de numero arenae. Paris: apud Guillaume Cavellat.Google Scholar
  29. Heath, T.L. 1897. The Works of Archimedes, Edited in Modern Notation with Introductory Chapters. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  30. Heath, T.L. 1913. Aristarchus of Samos. The Ancient Copernicus. A History of Greek Astronomy to Aristarchus together with Aristarchus’ Treatise on the Sizes and Distances of the Sun and Moon. Oxford: Oxford and Clarendon University Press.zbMATHGoogle Scholar
  31. Heiberg, J.L., and H.J. Menge. 1895. Euclidis Opera Omnia, vol. VII. Leipzig: Teubner.zbMATHGoogle Scholar
  32. Heiberg, J.L. 1894. Simplicii, in Aristotelis de caelo commentaria. Berlin: Reimer.CrossRefGoogle Scholar
  33. Heiberg, J.L. (ed.). 1913. Archimedis Opera omnia: cum commentariis Eutocii, vol. 2. Leipzig: Teubner.zbMATHGoogle Scholar
  34. Heiberg, J.L. (ed.) (1898–1903) Claudii Ptolemaei Opera quae exstant omnia. Vol. I, Syntaxis Mathematica, 2 vols. Leipzig: Teubner.Google Scholar
  35. Hultsch, Fridericus. 1867. Censorinus, De die natali liber. Lipsiae: Teubner.Google Scholar
  36. Huxley, George. 1964. Aristarchus of Samos and Greco-Babylonian Astronomy. Roman and Byzantine Studies 5 (2): 123–131.Google Scholar
  37. Jones, Alexander. 1999. Astronomical papyri from Oxyrhynchus, vol. 233. Philadelphia: Memoirs of the American Philosophical Society.zbMATHGoogle Scholar
  38. Kepler, Johannes. 1604. Ad Vitellionem Paralipomena, Quibus Astronomiae Pars Optica Traditvr. Frankfurt: C. Marnius & Heirs of J. Aubrius.Google Scholar
  39. Keyser, Paul T. 2009. Heliocentrism in or out of Heraclides. In Heraclides of Pontus: Discussion New Brunswick, ed. William W. Fortenbaugh, and Elizabeth Pender, 205–235. London, NJ: Transaction Publishers.Google Scholar
  40. Kuhn, Thomas. 1962. The Structure of Scientific Revolutions. Chicago: The University of Chicago Press. (third edition: 1996).Google Scholar
  41. Lakatos, Imre, and Elie Zahar. 1978. Why did Copernicus’s Research Programme Supersede Ptolemy’s? In The Methodology of Scientific Research Programmes. Philosophical Papers, Volume 1, ed. John Worral, and Gregory Currie, 168–192. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Lloyd, G.E.R. 1978. Saving the Appearances. The Classical Quarterly, New Series 28 (1): 202–222.CrossRefGoogle Scholar
  43. Martin, H. 1883. Mémoires sur l’histoire des hypothèses astronomiques chez les Grecs et les Romains. Mémoires de l’Académie des Inscriptions et Belles-Lettres, xxx. 2e partie.Google Scholar
  44. McColley, G. 1937. The Theory of the Diurnal Rotation of the Earth. Isis 26 (2): 392–402.CrossRefGoogle Scholar
  45. McDonald Comford, Francis. 1997. Plato’s Cosmology. The Timaeus of Plato. Indianapolis: Hackett Publishing Company.Google Scholar
  46. Neugebauer, O. 1942. Archimedes and Aristarchus. Isis 34: 6.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Neugebauer, O. 1956. The Transmission of Planetary Theories in Ancient and Medieval Astronomy. Scripta Mathematica 22: 165–192.MathSciNetzbMATHGoogle Scholar
  48. Neugebauer, O. 1975. A History of Ancient Mathematical Astronomy. Studies in the History of Mathematics and Physical Sciences 1. 3 vols. Berlin: Springer.Google Scholar
  49. North, John. 2008. Cosmos: An Illustrated History of Astronomy and Cosmology. Chicago: The University of Chicago Press.Google Scholar
  50. Peucer, Caspar. 1553. Elemanta Doctrinae de Circulis Coelestibus, et Primo Motu, Recognita et Correcta. Wittenberg: Crato.Google Scholar
  51. Pingree, D. 1976. The Recovery of Early Greek Astronomy from India. Journal for the History of Astronomy vii: 109–123.MathSciNetCrossRefGoogle Scholar
  52. Pingree, D. 1978. Indian Astronomy. Proceedings of the American Philosophical Society 122 (6): 361–364.Google Scholar
  53. Pingree, D. 2001. Nilakantha’s Planetary models. Journal of Indian Philosophy 29 (1/2, Special Issue: Ingalls Festschrift): 187–195.CrossRefGoogle Scholar
  54. Plofker, Kim. 2009. Mathematics in India. Princeton: Princeton University Press.zbMATHGoogle Scholar
  55. Plutarch. 1957. Moralia, Volume XII Concerning the Face Which Appears in the Orb of the Moon. On the Principle of Cold. Whether Fire or Water Is More Useful. Whether Land or Sea Animals Are Cleverer. Beasts Are Rational. On the Eating of Flesh. Translated by Harold Cherniss and William C. Helmbold. Loeb Classical Library 406. Harvard University Press: Harvard.Google Scholar
  56. Rackham, H. 1933. Cicero In Twenty-Eight Volumes, XIX, De Natura Deorum. Academica with an English translation of H. Rachkham. Cambrdige: Harvard University Press.Google Scholar
  57. Ragep, J. 2001. Tusi and Copernicus, the Earth’s Motion in Context. Science in Context xiv: 145–163.MathSciNetzbMATHGoogle Scholar
  58. Ramasubramanian, K.M. 1998. Model of Planetary Motion in the Works of Kerala Astronomers. Bulletin of the Astronomical Society of India 26: 11–31.Google Scholar
  59. Ramasubramanian, K., M.D. Srinivas, and M.S. Sriram. 1994. Modification of the Earlier Indian Planetary Theory by the Kerala Astronomers (c. 1500 AD) and the Implied Heliocentric Picture of Planetary Motion. Current Science 66 (10): 784–790.Google Scholar
  60. Rosen, Edward. 1978. Aristarchus of Samos and Copernicus. Bulletin of the American Society of Papyrologists xv: 85–93.Google Scholar
  61. Schiaparelli, G. 1926. Scritti sulla storia della Astronomia Antica. Parte prima- scirtti editi. Tomo II. Bologna: Mimesis.zbMATHGoogle Scholar
  62. Shukla, Kripa S. 1976. The \(\bar{{\rm A}}\) ryabhaṭiya of \(\bar{{\rm A}}\) ryabhaṭa. Critically edited with Introduction; English Translation, Notes, Comments and Indexes. New Delhi: Indian National Science Academy.Google Scholar
  63. Sprenger, A. 1856. The Copernican System of Astronomy Among the Arabs. Journal of the Asiatic Society of Bengal 25: 189.Google Scholar
  64. Stahl, W., and Johnson. 1977. Martianus Capella and the Seven Liberal arts, vol. 2. New York: Columbia University Press.Google Scholar
  65. Stahl, William H. 1942. Astronomy and Geography in Macrobius. Transactions of the American Philological Association LXXIII: 232–258.CrossRefGoogle Scholar
  66. Stahl, William H. 1945. The Greek Heliocentric Theory and Its Abandonment. Transactions and Proceedings of the American Philosophical Association 76: 321–332.CrossRefGoogle Scholar
  67. Stahl, William H. 1952. Macrobius, Commentary on the Dream of Scipio. New York: Columbia University Press.Google Scholar
  68. Sturm, Johann Christoph. 1667. Sand Rechnung. Verlagsort: Nürnberg.Google Scholar
  69. Swerdlow, Noel M., and Otto Neugebauer. 1984. Mathematical Astronomy in Copernicus’s De Revolutionibus, vol. 2. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  70. Swerdlow, Noel. 1973. The Derivation and First Draft of Copernicus’s Planetary Theory. Proceedings of the American Philosophical Society 117 (6): 423–512.Google Scholar
  71. Swerdlow, Noel. 1984. Notes: On the Retrogradations of Planets. Journal for the History of Astronomy xv: 30–32.CrossRefGoogle Scholar
  72. Tannery, P. 1888. La Grande année d’Aristarque de Samos. Mém. De la Soc. Des sciences phys. Et naturelles de Bordeaux 3 Serie iv: 79–96.zbMATHGoogle Scholar
  73. Tannery, P. 1899. Sur Héraclide du Pont. Revue des Éstudes grecques XII (47): 305–311.CrossRefGoogle Scholar
  74. Todd, R., and A.C. Bowen. 2009. Heraclides on the Rotation of the Earth: Text, Contexts and Continuities. In Heraclides of Pontus. Discussion, Routgers University Studies in Classical Humanities, vol. XV, ed. W. Fortenbaugh, and E. Pender. New Brunswick and London: Transaction Publishers.Google Scholar
  75. Toomer, G.J. 1998. Ptolemy’s Almagest. Princeton: Princeton University Press.Google Scholar
  76. Van der Waerden, B.L. 1970. Das heliozentrische System in der grieghischen, persischen un dindischen Astronomie. Neujahrsblatt ... derl Naturforschenden Gesellschaft in Zürich auf das Jahar 1970. (... im Anschlub and d. Jahrg. 114 der Vierteljahrschrift d. Naturf. Ges.).Google Scholar
  77. von Erhardt, Rudolf, and Erika von Erhardt-Siebold. 1942. Archimedes’ Sand-Reckoner: Aristarchos and Copernicus Author. Isis 33 (5): 578–602.MathSciNetCrossRefzbMATHGoogle Scholar
  78. Wall, B.E. 1975. Anatomy of a Precursor: The Historiography of Aristarchos of Samos. Studies in History and Philosophy of Science 6 (3): 201–228.MathSciNetCrossRefzbMATHGoogle Scholar
  79. Waterfield, Robin. 2008. Plato. Timaeus and Critias. A New Translation by Robun Waterfield. Oxford: Oxford University Press.Google Scholar
  80. Webster, Colin. 2014. Euclid’s Optics and Geometrical Astronomy. Apeiron 47 (4): 526–551.CrossRefzbMATHGoogle Scholar
  81. Westman, Robert S. 2011. The Copernican Question: Prognostication, Skepticism, and Celestial Order. California: University of California Press.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centro de Estudios de Filosofía e Historia de la Ciencia (CEFHIC)Universidad Nacional de Quilmes (UNQ)Bernal, Buenos AiresArgentina
  2. 2.CONICETConsejo Nacional de Investigaciones Científicas y TécnicasGodoy CruzArgentina

Personalised recommendations