Archive for History of Exact Sciences

, Volume 71, Issue 3, pp 279–318

Britton’s theory of the creation of Column \(\varPhi \) in Babylonian System A lunar theory



The following article has two parts. The first part recounts the history of a series of discoveries by Otto Neugebauer, Bartel van der Waerden, and Asger Aaboe which step by step uncovered the meaning of Column \(\varPhi \), the mysterious leading column in Babylonian System A lunar tables. Their research revealed that Column \(\varPhi \) gives the length in days of the 223-month Saros eclipse cycle and explained the remarkable algebraic relations connecting Column \(\varPhi \) to other columns of the lunar tables describing the duration of 1, 6, or 12 synodic months. Part two presents John Britton’s theory of the genesis of Column \(\varPhi \) and the System A lunar theory starting from a fundamental equation relating the columns discovered by Asger Aaboe. This article is intended to explain and, hopefully, to clarify Britton’s original articles which many readers found difficult to follow.


  1. Aaboe, A. 1968. Some lunar auxiliary tables and related texts from the late Babylonian period. Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser, (KDVSMM) 36: 12.MathSciNetMATHGoogle Scholar
  2. Aaboe, A. 1971. Lunar and solar velocities and the length of lunation intervals in Babylonian astronomy. KDVSMM 38: 6.MATHGoogle Scholar
  3. Brack-Bernsen, L. 1980. Some invesitgations on the ephemerides of Babylonian moon texts, System A. Centaurus 24: 36–50.MathSciNetCrossRefGoogle Scholar
  4. Brack-Bernsen, L. 1990. On the Babylonian lunar theory: A construction of Column \(\Phi \) from horizontal observations. Centaurus 33: 39–56.MathSciNetCrossRefMATHGoogle Scholar
  5. Britton, J.P. 1990. A tale of two cycles: Remarks on Column \(\Phi \). Centaurus 33: 57–69.MathSciNetCrossRefMATHGoogle Scholar
  6. Britton, J.P. 1999. Lunar anomaly in Babylonian astronomy: Portrait of an original theory. In Ancient astronomy and celestial divination, ed. N.W. Swerdlow, 187–254. Cambridge: MIT Press.Google Scholar
  7. Britton, J.P. 2007. Studies in Babylonian lunar theory: Part I. Empirical elements for modeling lunar and solar anomalies. Archive for the History of Exact Science 61: 83–145.CrossRefMATHGoogle Scholar
  8. Britton, J.P. 2009. Studies in Babylonian lunar theory: Part II. Treatment of lunar anomaly. Archive for the History of Exact Science 63: 357–431.CrossRefMATHGoogle Scholar
  9. Kugler, F. X. 1900. Die babylonische Mondrechnung, Zwei Systeme der Chaldäer über den Lauf des Mondes und der Sonne. Herder, Freiburg.Google Scholar
  10. Neugebauer, O. 1955. Astronomical Cuneiform Texts, published for the Institute for Advanced Studies, Princeton, by Lund Humphries, London.Google Scholar
  11. Neugebauer, O. 1957. “Saros” and lunar velocity in Babylonian astronomy. KDVSMM 31 (4): 1–23.MathSciNetMATHGoogle Scholar
  12. Neugebauer, O. 1975. A history of ancient mathematical astronomy. Berlin: Springer.Google Scholar
  13. Ossendrijver, M.A.J.H. 2012. Babylonian mathematical astronomy procedure texts. Berlin: Springer.CrossRefMATHGoogle Scholar
  14. Steele, J.M. 2002. A simple function for the length of the Saros in Babylonian astronomy. In Under one sky, astronomy and mathematics in the ancient Near East, ed. A. Imhausen, and J. M. Steele, 405–420. Papers delivered at a British Museum Symposium, AOAT, Ugarit, Müfnster.Google Scholar
  15. van der Waerden, B. 1966. Erwachende Wissenshaft, Band 2, Die Anfänge der Astronomie. P. Nordhoff Ltd. 1966, page numbers from the Birkhauser, 1968 edition.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Emeritus, Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations