Archive for History of Exact Sciences

, Volume 69, Issue 3, pp 231–255 | Cite as

On dating Hero of Alexandria

  • Ramon MasiàEmail author


The dating of Hero of Alexandria has been linked with the lunar eclipse of March 13, ad 62, since Otto Neugebauer discovered that this eclipse is the only one that can fit the one described in Hero’s Dioptra 35. Although only a number of scholars claim that Hero himself observed the eclipse, almost all of them take Neugebauer’s identification for granted. We use statistical and linguistic methods to criticize this assumption: all indices we have found point to the fact that the eclipse was merely invented as an example and, for that reason, that it cannot be used to determine Hero’s life span.


Triad Lunar Eclipse Total Eclipse Greek Culture Vernal Equinox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Bernard Vitrac for his insightful comments and remarks at every stage of elaboration, which improved the argument and avoided a serious mistake. Special thanks are given to Fabio Acerbi for critical scrutiny of the typescript and detailed remarks.


  1. Acerbi, Fabio. 2007. Hero of Alexandria. In New dictionary of scientific biography, ed. Noretta Koertge, vol. 6, vol. iii, 283–286. Detroit: Charles Scribner’s Sons.Google Scholar
  2. Acerbi, Fabio. 2012. I codici stilistici della matematica greca: Dimostrazioni, procedure, algoritmi. Quaderni Urbinati di Cultura Classica 101: 167–216.Google Scholar
  3. Acerbi, Fabio, and Bernard Vitrac. 2014. Héron d’Alexandrie, Metrica. Pisa-Roma: Fabrizio Serra Editore.Google Scholar
  4. Bacchiocchi, Samuele. 1985. The time of the crucifixion and resurrection. Michigan: Biblical Perspecives.Google Scholar
  5. Berggren, John Lennart, and Alexander Jones. 2000. Ptolemy’s geography. Princeton: Princeton University Press.zbMATHGoogle Scholar
  6. Brewster, Patricia Louise. 1980. Time and the Athenian citizen: The practical aspect of time in Ancient Athens. Master Thesis. Ontario: McMaster University.Google Scholar
  7. Clark, David J. 1978. After three days. The Bible Translator 30: 340–343.Google Scholar
  8. Cloud, Michael J., Ramon E. Moore, and R. Baker Kearfott. 2009. Introduction to interval analysis. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHGoogle Scholar
  9. Drachman, Aage G. 1950. Heron and Ptolemaios. Centaurus 1: 117–131.CrossRefMathSciNetGoogle Scholar
  10. Drachman, Aage G. 1972. Hero of Alexandria. In Dictionary of scientific biography, ed. Charles Coulston Gillispie, vol. 6, 310–315. New York: Charles Scribner’s Sons.Google Scholar
  11. Keyser, Paul. 1988. Suetonius Nero 41.2 and the date of Heron Mechanicus of Alexandria. Classical Philology 83: 218–220.Google Scholar
  12. Meeus, Jean. 1998. Astronomical algorithms. Richmon: Willmann-Bell.Google Scholar
  13. Melville, Bolling George. 1902. Beginning of the greek day. The American Journal of Philology 23: 428–435.CrossRefGoogle Scholar
  14. Mosshammer, Alden A. 2008. The easter computus and the origins of the christian era. Oxford: Oxford University Press.Google Scholar
  15. NASA Eclipse Web Site. Accessed 30 August 2013.
  16. Neugebauer, Otto. 1938. Über eine Methode zur Distanzbestimmung Alexandria-Rom bei Heron. Det Kongelige Danske Videnskabernes Selskab 26(2): 3–26.Google Scholar
  17. Neugebauer, Otto. 1975. A history of ancient mathematical astronomy, vol. 3. New York: Springer.CrossRefzbMATHGoogle Scholar
  18. Raïos, Dimitris. 2000. La date d’Héron d’Alexandrie: témoignages internes et cadre historico-culturel. In Autour de LA DIOPTRE d’Héron d’Alexandrie, ed. Gilbert Argoud, and Jean-Yves Guillaumin, 19–36. Saint-Étienne: Publications de l’Université de Saint-Étienne.Google Scholar
  19. Rome, Adolphe. 1923. Le probléme de la distance entre deux villes dans la Dioptra de Héron. Annales de la Société Scientifique de Bruxelles 42: 234–258.Google Scholar
  20. Schöne, Hermann. 1903. Heronis Alexandrini opera quae supersunt omnia, vol. III. Leipzig: B.G. Teubner.Google Scholar
  21. Sidoli, Nathan. 2005. Heron’s Dioptra 35 and analemma methods: An astronomical determination of the distance between two cities. Centaurus 47: 236–258.CrossRefzbMATHMathSciNetGoogle Scholar
  22. Sidoli, Nathan. 2011. Heron of Alexandria’s date. Centaurus 53: 55–61.CrossRefMathSciNetGoogle Scholar
  23. Souffrin, Pierre. 2000. Remarques sur la datation de la Dioptre d’Héron par l’éclipse de lune de 62. In Autour de LA DIOPTRE d’Héron d’Alexandrie, ed. Gilbert Argoud, and Jean-Yves Guillaumin, 13–17. Saint-Étienne: Publications de l’Université de Saint-Étienne.Google Scholar
  24. Steele, John M. 2000. Observations and predictions of eclipse times by early astronomers. Dordrecht: Kluwer Academic Publishers.CrossRefzbMATHGoogle Scholar
  25. Toomer, Gerald James. 1984. Ptolemy’s almagest. Princeton: Princeton University Press.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre Alexandre KoyréParisFrance
  2. 2.Universitat Oberta de CatalunyaBarcelonaSpain

Personalised recommendations