Archive for History of Exact Sciences

, Volume 69, Issue 1, pp 55–102 | Cite as

Frigyes Riesz and the emergence of general topology

The roots of ‘topological space’ in geometry
Article

Abstract

In 1906, Frigyes Riesz introduced a preliminary version of the notion of a topological space. He called it a mathematical continuum. This development can be traced back to the end of 1904 when, genuinely interested in taking up Hilbert’s foundations of geometry from 1902, Riesz aimed to extend Hilbert’s notion of a two-dimensional manifold to the three-dimensional case. Starting with the plane as an abstract point-set, Hilbert had postulated the existence of a system of neighbourhoods, thereby introducing the notion of an accumulation point for the point-sets of the plane. Inspired by Hilbert’s technical approach, as well as by recent developments in analysis and point-set topology in France, Riesz defined the concept of a mathematical continuum as an abstract set provided with a notion of an accumulation point. In addition, he developed further elementary concepts in abstract point-set topology. Taking an abstract topological approach, he formulated a concept of three-dimensional continuous space that resembles the modern concept of a three-dimensional topological manifold. In 1908, Riesz presented his concept of mathematical continuum at the International Congress of Mathematicians in Rome. His lecture immediately won the attention of people interested in carrying on his research. They promoted his ideas, thus assuring their gradual reception by several future founders of general topology. In this way, Riesz’s work contributed significantly to the emergence of this discipline.

References

  1. Aleksandrov, P. (ed.). 1998. Die Hilbertschen Probleme, volume 252 of Ostwalds Klassiker der exakten Wissenschaften. Frankfurt am Main: Verlag Harri Deutsch.Google Scholar
  2. Appert, A. 1982. Sur le meilleur terme primitif en topologie. Cahiers du séminaire d’histoire des mathématiques 3: 63–67.MathSciNetGoogle Scholar
  3. Baer, R. 1929. Beziehungen zwischen den Grundbegriffen der Topologie. Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse 15: 1–23.Google Scholar
  4. Baire, R. 1898. Sur les fonctions discontinues qui se rattachent aux fonctions continues. Comptes Rendus de l’Académie des Sciences Paris 126: 1621–1623.MATHGoogle Scholar
  5. Baire, R. 1899a. Sur la théorie des ensembles. Comptes Rendus de l’Académie des Sciences Paris 129: 946–949.MATHGoogle Scholar
  6. Baire, R. 1899b. Sur la théorie des fonctions discontinues. Comptes Rendus de l’Académie des Sciences Paris 129: 1010–1013.MATHGoogle Scholar
  7. Bernkopf, M. 1966. The development of function spaces with particular reference to their origins in integral equation theory. Archive for History of Exact Sciences 3: 1–96.CrossRefMathSciNetMATHGoogle Scholar
  8. Bognár, M., and Á. Császár. 2006. Topology, 9–25. In A panorama of Hungarian mathematics in the twentieth century I, ed. Horvath, J. Berlin: Springer.Google Scholar
  9. Bouligand, G. 1928. Sur quelques points de topologie restreinte du premier ordre. Bulletin de la Société Mathématique de France 56: 26–35.MathSciNetMATHGoogle Scholar
  10. Brouwer, L. 1910. Beweis des jordanschen kurvensatzes. Mathematische Annalen 69(2): 169–175.CrossRefMathSciNetMATHGoogle Scholar
  11. Browder, F.E., (ed.). 1974. Mathematical developments arising from Hilbert Problems, volume 28 of Proceedings of symposia in pure mathematics. Providencem Rhode Island: AMS.Google Scholar
  12. Chittenden, E.W. 1915. The converse of the Heine-Borel theorem in a Riesz domain. Bulletin of the American Mathematical Society 21: 179–183.CrossRefMathSciNetMATHGoogle Scholar
  13. Chittenden, E.W. 1919. On the Heine-Borel property in the theory of abstract sets. Bulletin of the American Mathematical Society 25: 60–66.CrossRefMathSciNetGoogle Scholar
  14. Chittenden, E.W. 1929. On general topology and the relation of the properties of the class of all continuous functions to the properties of space. Transactions of the American Mathematical Society 31: 290–321.CrossRefMathSciNetMATHGoogle Scholar
  15. Crilly, T., D.M. Johnson. 1999. The emergence of topological dimension theory. In History of topology, ed. James, I.M., 1–24. Amsterdam: Elsevier.Google Scholar
  16. Dresden, A. 1929. The march meeting in new york. Bulletin of the American Mathematical Society 35: 433–446.CrossRefMathSciNetGoogle Scholar
  17. Dugac, P. 1976. Notes et documents sur la vie et l’œuvre de René Baire. Archive for History of Exact Sciences 15: 297–383.CrossRefMathSciNetMATHGoogle Scholar
  18. Fehr, H. 1908. 4e congrès international des mathématiciens, Rome, 1908. L’Enseignement Mathematique 10: 226–265.MATHGoogle Scholar
  19. Fréchet, M. 1905. Sur les fonctions limites et les opérations fonctionnelles. Comptes Rendus de l’Académie des Sciences Paris 140: 27–29.MATHGoogle Scholar
  20. Fréchet, M. 1906. Sur quelques points du Calcul fonctionnel (thèse de doctorat, Paris, 1906). Rendiconti del Circolo Matematico di Palermo (2) 22: 1–74.CrossRefMATHGoogle Scholar
  21. Fréchet, M. 1910. Les ensembles abstraits et le calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (2) 30(1): 1–26.CrossRefMATHGoogle Scholar
  22. Fréchet, M. 1917. Sur la notion de voisinage dans les espaces abstraits. Comptes Rendus de l’Académie des Sciences Paris 165: 359–360.MATHGoogle Scholar
  23. Fréchet, M. 1918. Sur la notion de voisinage dans les espaces abstraits. Bulletin des Sciences Mathématiques 42: 138–156.MATHGoogle Scholar
  24. Fréchet, M. 1921. Sur les ensembles abstraits. Annales Scientifiques de l’École Normale Supérieure 38: 341–388.MATHGoogle Scholar
  25. Fréchet, M. 1928a. Démonstration de quelques propriétés des ensembles abstraits. American Journal of Mathematics 50(1): 49–72.CrossRefMathSciNetMATHGoogle Scholar
  26. Fréchet, M. 1928b. Les espaces abstraits et leur théorie considérée comme introduction à l’analyse générale. Paris: Gauthier-Villars.MATHGoogle Scholar
  27. Frink, O.J. 1930. The fourth postulates of Riesz and Hausdorff. Bulletin of the American Mathematical Society 36: 281–283.CrossRefMathSciNetMATHGoogle Scholar
  28. Gray, J.J. 2000. The Hilbert challenge. New York: Oxford University Press.MATHGoogle Scholar
  29. Gray, J.J. 2008. Plato’s ghost. Princeton, N.J.: Princeton University Press.MATHGoogle Scholar
  30. Guggenheimer, H. 1977. The Jordan curve theorem and an unpublished manuscript by Max Dehn. Archive for History of Exact Sciences 17(2): 193–200.CrossRefMathSciNetMATHGoogle Scholar
  31. Hales, T.C. 2007. Jordan’s proof of the jordan curve theorem. Studies in Logic, Grammar and Rhetoric 23(10): 45–60.MathSciNetGoogle Scholar
  32. Hallett, M., and U. Majer (eds.). 2004. David Hilbert’s lectures on the foundations of geometry, 1891–1902. Berlin: Springer.MATHGoogle Scholar
  33. Hausdorff, F. 1914. Grundzüge der Mengenlehre. Leipzig: Teubner.MATHGoogle Scholar
  34. Hawkins, T. 1999. Weyl and the topology of continuous groups. In History of topology, ed. James, I.M., 169–198. Amsterdam: Elsevier.Google Scholar
  35. Herrlich, H., Hušek, M., and G. Preuß. 2002a. Zusammenhang. In Felix Hausdorff Gesammelte Werke Band II: Grundüzge der Mengenlehre, ed. Purkert,W., vol. 2, 752–756. Berlin: Springer.Google Scholar
  36. Hilbert, D. 1900. Mathematische probleme. Göttinger Nachrichten 1900(3): 253–297.MATHGoogle Scholar
  37. Hilbert, D. 1902a. Mathematical problems. Bulletin of the American Mathematical Society 8: 437–479.Google Scholar
  38. Hilbert, D. 1902b. Ueber die Grundlagen der Geometrie. Göttinger Nachrichten 1902(4): 233–241.Google Scholar
  39. Hilbert, D. 1903. Ueber die Grundlagen der Geometrie. Mathematische Annalen 56: 381–422.CrossRefMathSciNetMATHGoogle Scholar
  40. Hilbert, D. 1956. Grundlagen der Geometrie, 8th ed. Stuttgart: Teubner.MATHGoogle Scholar
  41. Hildebrandt, T.H. 1926. The Borel theorem and its generalizations. Bulletin of the American Mathematical Society 32: 423–474.CrossRefMathSciNetMATHGoogle Scholar
  42. Johnson, D.M. 1981. The problem of the invariance of dimension in the growth of modern topology part 2. Archive for History of Exact Sciences 25: 85–267.CrossRefMathSciNetMATHGoogle Scholar
  43. Jones, F.B. 1997. The beginning of topology in the United States and the Moore school. In Handbook of the history of general topology, eds. Aull, C., and R. Lowen, vol. 1, 97–103. Dordrecht: Kluwer Academic Publishers.Google Scholar
  44. Kuratowski, C. 1922. Sur l’opération \(\overline{A}\) de l’analysis situs. Fundamenta Mathematicae 3: 182–199.MATHGoogle Scholar
  45. Kuratowski, C. 1933. Topologie, volume 1. Nakladem Polskiego Towarzystwa Matematycznego.Google Scholar
  46. Lennes, N.J. 1911. Curves in non-metrical analysis situs with an application in the calculus of variations. American Journal of Mathematics 33: 287–326.Google Scholar
  47. Manheim, J. 1964. The genesis of point set topology. Oxford: Pergamon Press.MATHGoogle Scholar
  48. Moore, E.H. 1910. Introduction to a form of general analysis. New Haven: Yale University Press.Google Scholar
  49. Moore, G. 2008. The emergence of open sets, closed sets, and limit points in analysis and topology. Historia Mathematica 35: 220–241.CrossRefMathSciNetMATHGoogle Scholar
  50. Moore, R.L. 1915. The linear continuum in terms of point and limit. The Annals of Mathematics 16(2): 123–133.MATHGoogle Scholar
  51. Pier, J.-P. 1980. Historique de la notion de compacité. Historia Mathematica 7(4): 425–443.CrossRefMathSciNetMATHGoogle Scholar
  52. Pitcher, A. 1914. On the connection of an abstract set, with applications to the theory of functions of a general variable. American Journal of Mathematics 36(3): 261–266.CrossRefMathSciNetMATHGoogle Scholar
  53. Poincaré, H. 1905. La valeur de la science. Paris: Flammarion.Google Scholar
  54. Purkert, W. 2002. Grundzüge der Mengenlehre. Historische Einführung. In Felix Hausdorff Gesammelte Werke Band II: Grundüzge der Mengenlehre, ed. Purkert, W., vol. 2, 1–89. Berlin: Springer.Google Scholar
  55. Purkert, W. et al. 2002. Zum Begriff des topologischen Raumes. In Felix Hausdorff Gesammelte Werke Band II: Grundüzge der Mengenlehre, ed. Purkert, W., vol. 2, 675–744. Berlin: Springer.Google Scholar
  56. Reitberger, H. 1997. The contributions of L. Vietoris and H. Tietze to the foundations of general topology. In Handbook of the history of general topology, eds. Aull, C., and R. Lowen, vol. 1, 31–40. Dordrecht: Kluwer Academic Publishers.Google Scholar
  57. Riesz, F. 1904a. Letter by Frigyes Riesz to David Hilbert from Nov. 18, 1904, Löcse. Abteilung für Handschriften und seltene Drucke der Niedersächsischen Staats- und Universitätsbibliothek Göttingen, David Hilberts Nachlaß, Cod. Ms. D. Hilbert 332.Google Scholar
  58. Riesz, F. 1904b. Letter by Frigyes Riesz to David Hilbert, undated (probably from December 1904, LR). Abteilung für Handschriften und seltene Drucke der Niedersächsischen Staats- und Universitätsbibliothek Göttingen, David Hilberts Nachlaß, Cod. Ms. D. Hilbert 332.Google Scholar
  59. Riesz, F. 1904c. Über einen Satz der Analysis situs. Mathematische Annalen 59: 409–415.CrossRefMathSciNetMATHGoogle Scholar
  60. Riesz, F. 1905a. Sur les ensembles discontinus. Comptes Rendus de l’Académie des Sciences, Paris 141: 650–653.Google Scholar
  61. Riesz, F. 1905b. Sur un théorème de M. Borel. Comptes Rendus de l’Académie des Sciences, Paris 140: 224–226.MATHGoogle Scholar
  62. Riesz, F. 1905c. Über mehrfache Ordnungstypen I. Mathematische Annalen 61: 406–421.CrossRefMathSciNetMATHGoogle Scholar
  63. Riesz, F. 1906a. A térfogalom genesise. Math. és Phys. Lapok 15: 97–122.Google Scholar
  64. Riesz, F. 1906b. Die Genesis des Raumbegriffes. Mathematische und naturwissenschaftliche Berichte aus Ungarn 24: 309–353.Google Scholar
  65. Riesz, F. 1907a. A térfogalom genesise. Math. és Phys. Lapok 16: 145–161.Google Scholar
  66. Riesz, F. 1907b. Letter by Frigyes Riesz to Maurice Fréchet from May 21, 1907, Paris. Archive de l’Académie des Sciences de Paris Fonds Maurice Fréchet F2: 10.Google Scholar
  67. Riesz, F. 1907c. Sur une espéce de géométrie analytique des systèmes de fonctions sommables. Comptes Rendus de l’Académie des Sciences Paris 144: 1409–1411.MATHGoogle Scholar
  68. Riesz, F. 1909. Stetigkeitsbegriff und abstrakte Mengenlehre. In Atti del IV Congresso Internazionale dei Matematici (Roma, 6–11 Aprile 1908), ed. Castelnuovo, G., vol. 2, 18–24. Accademia dei Lincei: Roma.Google Scholar
  69. Rodríguez, L. 2006. Friedrich Riesz’ Beiträge zur Herausbildung des modernen mathematischen Konzepts abstrakter Räume. Synthesen intellektueller Kulturen in Ungarn, Frankreich und Deutschland. PhD thesis, Johannes Gutenberg-Universität Mainz, http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hebis:77-11793. Accessed 25 October 2006
  70. Root, R.E. 1911. Iterated limits of functions on an abstract range. Bulletin of the American Mathematical Society 17(10): 538–539.CrossRefMathSciNetMATHGoogle Scholar
  71. Root, R.E. 1914a. Iterated limits in general analysis. American Journal of Mathematics 36: 79–104.CrossRefMathSciNetMATHGoogle Scholar
  72. Root, R.E. 1914b. Limits in terms of order, with example of limiting element not approachable by a sequence. Transactions of the American Mathematical Society 15: 51–71.CrossRefMathSciNetMATHGoogle Scholar
  73. Rowe, D.E. 1995. The Hilbert problems and the mathematics of a new century, 1–39. Preprints-Reihe des FB Mathematik: Johannes Gutenberg-Universität Mainz.Google Scholar
  74. Schoenflies, A. 1902. Ueber einen grundlegenden Satz der Analysis Situs. Göttinger Nachrichten 1902: 185–192.MATHGoogle Scholar
  75. Schoenflies, A. 1904. Beiträge zur Theorie der Punktmengen. I. Mathematische Annalen 58: 195–234.CrossRefGoogle Scholar
  76. Schoenflies, A. 1908. Die Entwicklung der Lehre von den Punktmannigfaltigkeiten II. Jahresbericht der DMV (Ergänzungsband II): Teubner, Leipzig.Google Scholar
  77. Scholz, E. 1999. The concept of manifold, 1850–1950. In History of topology, ed. James, I.M., 25–64. Amsterdam: Elsevier.Google Scholar
  78. Siegmund-Schultze, R. 1998. Eliakim Hastings Moore’s ‘General Analysis’. Archive for History of Exact Sciences 52: 51–89.CrossRefMathSciNetMATHGoogle Scholar
  79. Sierpinski, W. 1927. La notion de dérivée comme base d’une théorie des ensembles abstraits. Mathematische Annalen 97(1): 321–337.CrossRefMathSciNetGoogle Scholar
  80. Stephens, R. 1932. Continuous transformations of abstract spaces. Transactions of the American Mathematical Society 34: 394–408.CrossRefMathSciNetGoogle Scholar
  81. Szénássy, B. 1992. History of mathematics in Hungary until the 20th century. Berlin: Springer.CrossRefMATHGoogle Scholar
  82. Taylor, A.E. 1982. A study of Maurice Fréchet: I. His early work on point set theory and the theory of functionals. Archive for History of Exact Sciences 27: 233–295.CrossRefMathSciNetMATHGoogle Scholar
  83. Taylor, A.E. 1985. A study of Maurice Fréchet: II. Mainly about his work on general topology. Archive for History of Exact Sciences 34: 279–380.CrossRefMathSciNetMATHGoogle Scholar
  84. Thron, W. 1997. Frederic Riesz’ contributions to the foundations of general topology. In Handbook of the history of general topology, eds. Aull, C., and R. Lowen, vol. 1, 21–29. Dordrecht: Kluwer Academic Publishers.Google Scholar
  85. Thron, W.J. 1973. On a problem of F. Riesz concerning proximity structures. Proceedings of the American Mathematical Society 40(1): 323–326.CrossRefMathSciNetMATHGoogle Scholar
  86. Tietze, H. 1923. Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des Umgebungsbegriffs. Mathematische Annalen 88(3): 290–312.CrossRefMathSciNetGoogle Scholar
  87. Toepell, M.M. 1986. Über die Entstehung von David Hilberts “Grundlagen der Geometrie”. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  88. Torretti, R. 1978. Philosophy of Geometry from Riemann to Poincaré, volume 7 of Episteme. Dordrecht: Reidel.Google Scholar
  89. Veblen, O. 1905. Theory on plane curves in non-metrical analysis situs. Transactions of the American Mathematical Society 6(1): 83–98.CrossRefMathSciNetMATHGoogle Scholar
  90. Vietoris, L. 1921. Stetige Mengen. Monatshefte für Mathematik und Physik 31: 173–204.CrossRefMathSciNetMATHGoogle Scholar
  91. Willard, S. 1970. General topology. Massachusetts: Addison-Wesley.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of Applied Sciences FuldaFuldaGermany

Personalised recommendations