Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 5, pp 641–692 | Cite as

Embedding semigroups in groups: not as simple as it might seem

  • Christopher Hollings
Article

Abstract

We consider the investigation of the embedding of semigroups in groups, a problem which spans the early-twentieth-century development of abstract algebra. Although this is a simple problem to state, it has proved rather harder to solve, and its apparent simplicity caused some of its would-be solvers to go awry. We begin with the analogous problem for rings, as dealt with by Ernst Steinitz, B. L. van der Waerden and Øystein Ore. After disposing of A. K. Sushkevich’s erroneous contribution in this area, we present A. I. Maltsev’s example of a cancellative semigroup which may not be embedded in a group, which showed for the first time that such an embedding is not possible in general. We then look at the various conditions that were derived for such an embedding to take place: the sufficient conditions of Paul Dubreil and others, and the necessary and sufficient conditions obtained by A. I. Maltsev, Vlastimil Pták and Joachim Lambek. We conclude with some comments on the place of this problem within the theory of semigroups, and also within abstract algebra more generally.

Mathematics Subject Classification (2010)

01 A 60 20-03 20 M 99 

References

  1. Aleksandrov, P.S., Yu.L. Ershov, M.I. Kargapolov, E.N. Kuzmin, D.M. Smirnov, A.D. Taimanov, and A.I. Shirshov. 1968. Anatolii Ivanovich Maltsev: Obituary. Uspekhi matematicheskikh nauk 23(3): 159–170 (in Russian); English translation: Russian Mathematical Surveys 23(3): 157–168.Google Scholar
  2. Anon. 1940. All-Union conference on algebra, 13–17 November 1939. Izvestiya Akademii nauk SSSR. Seriya Matematicheskaya 4(1): 127–136 (in Russian).Google Scholar
  3. Anon. 1970. Oystein Ore (1899–1968). Journal of Combinatorial Theory 8: 1–3.Google Scholar
  4. Anon. 1989. Academician Anatolii Ivanovich Maltsev (on the 80th anniversary of his birth). Sibirskii matematicheskii zhurnal 30(6): 3–6 (in Russian).Google Scholar
  5. Anon. 2000. List of publications of Vlastimil Pták, 1995–1999. Linear Algebra and its Applications 310: 23–24.Google Scholar
  6. Aubert, K.E. 1970. Øystein Ore and his mathematical work. Nordisk Matematisk Tidskrift 18: 121–126 (in Norwegian).Google Scholar
  7. Barr, Michael. 1999. An appreciation of Jim Lambek at McGill: A talk given on the occasion of Jim Lambek’s 75th birthday. Theory and Applications of Categories 6 (The Lambek Festschrift): 2–4.Google Scholar
  8. Barr, M., P.J. Scott, and R.A.G. Seely. 2000. Introduction to “The Lambek Festschrift: mathematical structures in computer science (Montreal, QC, 1997)”. Mathematical Structures in Computer Science 10: 97–98.CrossRefGoogle Scholar
  9. Bokut, L.A. 1987. Embedding of rings. Uspekhi matematicheskikh nauk 42(4): 87–111 (in Russian); English translation: Russian Mathematical Surveys 42(4): 105–138.Google Scholar
  10. Bush, George C. 1961. On embedding a semigroup in a group. Ph.D. thesis, Queen’s University, Kingston, Ontario.Google Scholar
  11. Bush, George C. 1962. E1541. The American Mathematical Monthly 69(9): 919.CrossRefMathSciNetGoogle Scholar
  12. Bush, George C. 1963a. The embedding theorems of Malcev and Lambek. Canadian Journal of Mathematics 15: 49–58.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Bush, George C. 1963b. Note on an embedding theorem of Adyan. Proceedings of the American Mathematical Society 14: 597–599.CrossRefzbMATHMathSciNetGoogle Scholar
  14. Bush, George C. 1967. On the terminology of functions. Ontario Mathematics Gazette 5: 16–22.Google Scholar
  15. Bush, George C. 1969. The language of functions: A survey and a proposal. Mathematics Magazine 42(5): 259–262.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Bush, George C. 1971. The embeddability of a semigroup—conditions common to Mal’cev and Lambek. Transactions of the American Mathematical Society 157: 437–448.zbMATHMathSciNetGoogle Scholar
  17. Bush, George C. 1989. An approximately \({O}(\log \log n)\) search inspired by Newton’s method. Doğa. Turkish Journal of Mathematics 13(3): 101–106.zbMATHMathSciNetGoogle Scholar
  18. Bush, George C., and Phillip E. Obreanu. 1965. Basic concepts of mathematics. New York: Holt, Rinehart and Winston.zbMATHGoogle Scholar
  19. Clifford, A.H. 1941. Semigroups admitting relative inverses. Annals of Mathematics 42: 1037–1049.CrossRefzbMATHMathSciNetGoogle Scholar
  20. Clifford, A.H., and G.B. Preston. 1961. The algebraic theory of semigroups. Mathematical Surveys, no. 7, vol. 1, American Mathematical Society, Providence, RI; 2nd ed., 1964; Russian translation of 2nd ed.: Izdatelstvo Mir, Moscow, 1972.Google Scholar
  21. Clifford, A.H., and G.B. Preston. 1967. The algebraic theory of semigroups. Mathematical Surveys, no. 7, vol. 2, American Mathematical Society, Providence, RI; 2nd ed., 1968; Russian translation of 1st ed.: Izdatelstvo Mir, Moscow, 1972.Google Scholar
  22. Cohn, P.M. 1965. Universal algebra. New York: Harper and Row.zbMATHGoogle Scholar
  23. Cohn, P.M. 1971. Free rings and their relations. London, New York: Academic Press.zbMATHGoogle Scholar
  24. Cohn, P.M. 1995. Skew fields: Theory of general division rings, volume 57 of Encyclopedia of Mathematics and its Applications, ed. G.C. Rota. Cambridge: Cambridge University Press.Google Scholar
  25. Corry, Leo. 1996. Modern algebra and the rise of mathematical structures. Birkhäuser; 2nd revised ed., 2004.Google Scholar
  26. Corry, Leo. 2000a. The origins of the definition of abstract rings. Modern Logic 8: 5–27.zbMATHMathSciNetGoogle Scholar
  27. Corry, Leo. 2000b. The origins of the definition of abstract rings. Gazette des mathématiciens 83: 29–47.zbMATHMathSciNetGoogle Scholar
  28. Coutinho, S.C. 2004. Quotient rings of noncommutative rings in the first half of the 20th century. Archive for History of Exact Sciences 58: 255–281.CrossRefzbMATHMathSciNetGoogle Scholar
  29. de Séguier, J.-A. 1904. Théorie des groupes finis: Éléments de la théorie des groupes abstraits. Paris: Gauthier-Villars.Google Scholar
  30. Dimitrić, R. 1992. Anatoly Ivanovich Maltsev. The Mathematical Intelligencer 14(2): 26–30.CrossRefzbMATHMathSciNetGoogle Scholar
  31. Doss, R. 1948. Sur l’immersion d’un semi-groupe dans un groupe. Bulletin des sciences mathématiques 72: 139–150.zbMATHMathSciNetGoogle Scholar
  32. Dubreil, Paul. 1943. Sur les problèmes d’immersion et la théorie des modules. Comptes rendus hebdomadaires des séances de l’Académie des sciences de Paris 216: 625–627.zbMATHMathSciNetGoogle Scholar
  33. Dubreil, Paul. 1946. Algèbre, tome I: Équivalences, opérations. Groupes, anneaux, corps, Cahiers scientifiques, fascicule XX, Gauthier-Villars, Paris; 2nd ed., 1954; 3rd ed., 1963.Google Scholar
  34. Dubreil, Paul. 1981. Apparition et premiers développements de la théorie des demi-groupes en France. Cahiers du séminaire d’histoire des mathématiques 2: 59–65.MathSciNetGoogle Scholar
  35. Dubreil, Paul. 1983. Souvenirs d’un boursier rockefeller 1929–1931. Cahiers du séminaire d’histoire des mathématiques 4: 61–73.MathSciNetGoogle Scholar
  36. Faisant, Alain. 1971a. Immersion d’un demi-groupe dans un groupe I, Séminaire P. Lefebvre (année 1970/1971), Structures algébriques, volume II, exp. no. 17, pp. 210–217.Google Scholar
  37. Faisant, Alain. 1971b. Immersion d’un demi-groupe dans un groupe II, Séminaire P. Lefebvre (année 1970/1971), Structures algébriques, volume II, exp. no. 18, pp. 218–231.Google Scholar
  38. Faisant, Alain. 1971c. Immersion d’un demi-groupe dans un groupe III, Séminaire P. Lefebvre (année 1970/1971), Structures algébriques, volume II, exp. no. 19, pp. 232–240.Google Scholar
  39. Faisant, Alain. 1972. Demi-groupes de fractions et plongement d’un demi-groupe dans un groupe, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin, L. Lesieur et C. Pisot (24e année: 1970/71), Algèbre et théorie des nombres, fasc. 2, exp. no. 12.Google Scholar
  40. Fenstad, Jens Erik. 1996. Thoralf Albert Skolem 1887–1963: A biographical sketch. Nordic Journal of Philosophical Logic 1(2): 99–106.Google Scholar
  41. Fiedler, Miroslav. 2000. Vlastimil Pták (8 November 1925–9 May 1999). Linear Algebra and its Applications 310: 21–22.CrossRefzbMATHMathSciNetGoogle Scholar
  42. Fiedler, Miroslav, and Vladimír Müller. 2000a. Professor Vlastimil Pták died. Czechoslovak Mathematical Journal 50(125): 445–447.CrossRefzbMATHMathSciNetGoogle Scholar
  43. Fiedler, Miroslav, and Vladimír Müller. 2000b. Professor Vlastimil Pták died. Mathematica Bohemica 125(3): 371–373.zbMATHMathSciNetGoogle Scholar
  44. Gainov, A.T., S.S. Goncharov, Yu.L. Ershov, D.A. Zakharov, E.N. Kuzmin, L.L. Maksimova, Yu.L. Merzlyakov, D.M. Smirnov, A.D. Taimanov, V.K. Kharchenko, and E.I. Khukhro. 1989. On the eightieth birthday of outstanding Soviet mathematician Academician A. I. Maltsev. Algebra i Logika 28(6): 615–618 (in Russian).Google Scholar
  45. Goodearl, K.R. 1979. Von Neumann regular rings, Monographs and Studies in Mathematics 4. London: Pitman.Google Scholar
  46. Green, John W., and Everett Pitcher. 1965. The April meeting in New York. Bulletin of the American Mathematical Society 71(4): 589–599.CrossRefMathSciNetGoogle Scholar
  47. Heuer, C.V. 1963. Solution to E1541. The American Mathematical Monthly 70(7): 759.CrossRefMathSciNetGoogle Scholar
  48. Heyting, A. 1927. Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nicht-kommutativer Multiplikation. Mathematische Annalen 98: 465–490.CrossRefzbMATHMathSciNetGoogle Scholar
  49. Hollings, Christopher. 2007. Some first tantalizing steps into semigroup theory. Mathematics Magazine 80(5): 331–344.zbMATHMathSciNetGoogle Scholar
  50. Hollings, Christopher. 2009a. The early development of the algebraic theory of semigroups. Archive for History of Exact Sciences 63(5): 497–536.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Hollings, Christopher. 2009b. Anton Kazimirovich Suschkewitsch (1889–1961). BSHM Bulletin: Journal of the British Society for the History of Mathematics 24(3): 172–179.CrossRefzbMATHMathSciNetGoogle Scholar
  52. Hollings, Christopher. 2014a. Investigating a claim for Russian priority in the abstract definition of a ring, to appear in BSHM Bulletin: Journal of the British Society for the History of Mathematics.Google Scholar
  53. Hollings, Christopher. 2014b. Mathematics across the Iron Curtain: A history of the algebraic theory of semigroups, to be published by the American Mathematical Society.Google Scholar
  54. Holvoet, Roger. 1959. Sur l’immersion d’un semi-gruppe dans un groupe. Bulletin de la Société mathématique de Belgique 11: 134–136.zbMATHMathSciNetGoogle Scholar
  55. Howie, J.M. 1995. Fundamentals of semigroup theory, LMS Monographs, New Series, no. 12. Oxford: Clarendon Press.Google Scholar
  56. Jackson, Howard L. 1956. The embedding of a semigroup in a group. MA thesis, Queen’s University, Kingston, Ontario.Google Scholar
  57. Johnstone, P.T. 2008. On embedding categories in groupoids. Mathematical Proceedings of the Cambridge Philosophical Society 145(2): 273–294.CrossRefzbMATHMathSciNetGoogle Scholar
  58. Katz, Victor J. 2009. A history of mathematics: An introduction, 3rd ed. Reading: Addison-Wesley.Google Scholar
  59. Khalezov, E.A. 1984. On the 75th birthday of Academician A. I. Maltsev. Sibirskii matematicheskii zhurnal 25: 1–2 (in Russian).Google Scholar
  60. Klein-Barmen, Fritz. 1943. Über gewisse Halbverbände und kommutative Semigruppen, Erster Teil, Mathematische Zeitschrift 48: 275–288. Zweiter Teil, Mathematische Zeitschrift 48: 715–734.Google Scholar
  61. Krstić, Sava. 1985. Embedding semigroups in groups: A geometrical approach. Publications. Institut mathématique (Beograd). Nouvelle Série 38(52): 69–82.Google Scholar
  62. Kurosh, A.G. 1959. Anatolii Ivanovich Maltsev (on his fiftieth birthday). Uspekhi matematicheskikh nauk 14(6): 203–211 (in Russian).Google Scholar
  63. Lallement, Gérard. 1995. Paul Dubreil (1904–1994) in memoriam. Semigroup Forum 50: 1–7.CrossRefzbMATHMathSciNetGoogle Scholar
  64. Lambek, J. 1950. The immersibility of a semigroup into a group. Ph.D. thesis, McGill University.Google Scholar
  65. Lambek, J. 1951. The immersibility of a semigroup into a group. Canadian Journal of Mathematics 3: 34–43.CrossRefzbMATHMathSciNetGoogle Scholar
  66. Lambek, J. 2006. Pregroups and natural language processing. The Mathematical Intelligencer 28(2): 41–48.CrossRefzbMATHMathSciNetGoogle Scholar
  67. Lesieur, Léonce. 1994. Paul Dubreil (1904–1994). Gazette des mathématiciens 60: 74–75.Google Scholar
  68. Lyapin, E.S. 1960. Semigroups. Gosudarstvennoe Izdatelstvo Fiziko-Matematicheskogo Literatura, Moscow (in Russian); English translation: Translations of Mathematical Monographs, vol. 3, American Mathematical Society, 1963.Google Scholar
  69. Malcev, A.I. [Maltsev] 1937. On the immersion of an algebraic ring into a field. Mathematische Annalen 113: 686–691.Google Scholar
  70. Malcev, I.A. [Maltsev] 2010. Anatolii Ivanovich Malcev (on the centenary of his birth). Uspekhi matematicheskikh nauk 65(5): 197–203 (in Russian); English translation: Russian Mathematical Surveys 65(5): 991–997.Google Scholar
  71. Maltsev, A.I. 1939. On the immersion of associative systems in groups. Matematicheskii sbornik 6: 331–336 (in Russian).Google Scholar
  72. Maltsev, A.I. 1940. On the immersion of associative systems in groups II. Matematicheskii sbornik 8: 251–264 (in Russian).Google Scholar
  73. Maltsev, A.I. 1953. Nilpotent semigroups. Ivanovskii gosudarstvennii pedagogicheskii institut. Uchenye zapiski. Fiziko-matematicheskye nauki 4: 107–111 (in Russian).Google Scholar
  74. Nikolskii, S.M. 1972. Excerpts from a memoir on A. I. Maltsev. Uspekhi matematicheskikh nauk 27(4): 223–230 (in Russian); English translation: Some reminiscences of A. I. Mal’tsev. Russian Mathematical Surveys 27(4): 179–187.Google Scholar
  75. Ore, O. 1931. Linear equations in non-commutative fields. Annals of Mathematics 32(3): 463–477.CrossRefMathSciNetGoogle Scholar
  76. Pták, V. 1949. Immersibility of semigroups. Acta Facultatis Rerum Naturalium Universitatis Carolinae 192.Google Scholar
  77. Pták, V. 1952. Immersibility of semigroups. Czechoslovak Mathematical Journal 2(77): 247–271 (in Russian).Google Scholar
  78. Pták, V. 1953a. Immersibility of semigroups. Československá Akademie věd. Časopis pro pěstování matematiky 78: 259–261 (in Czech).Google Scholar
  79. Pták, V. 1953b. On complete topological vector spaces. Czechoslovak Mathematical Journal 78: 285–290 (in Russian).Google Scholar
  80. Pták, V. 1953c. On complete topological vector spaces. Czechoslovak Mathematical Journal 78: 301–364 (in Russian).Google Scholar
  81. Richardson, A.R. 1926. Hypercomplex determinants. Messenger of Mathematics 55: 145–152.Google Scholar
  82. Richardson, A.R. 1928. Simultaneous linear equations over a division algebra. Proceedings of the London Mathematical Society 28: 395–420.CrossRefzbMATHGoogle Scholar
  83. Schein, B.M. 1961. Embedding semigroups in generalised groups. Matematicheskii sbornik 55(97): 379–400 (in Russian).Google Scholar
  84. Schmidt, O.Yu. 1916. Abstract theory of groups, Kiev; 2nd ed., Gostekhizdat, Moscow, 1933; reprinted by Knizhnyy dom “Librokom”, Moscow, 2010 (in Russian); annotated English translation of 2nd ed. by Fred Holling and J.B. Roberts, Freeman, 1966.Google Scholar
  85. Shutov, E.G. 1966. Embedding of semigroups, in Interuniversity scientific symposium on general algebra, Tartu State University, pp. 217–230 (in Russian); English translation: American Mathematical Society Translations (2) 139 (1988): 197–204.Google Scholar
  86. Sinai, Yakov (ed.). 2003. Russian mathematicians in the 20th century. Singapore: World Scientific.zbMATHGoogle Scholar
  87. Skolem, Th. 1951. Some remarks on semi-groups. Det Kongelige Norske Videnskabers Selskabs Forhandlinger 24(9): 42–47.MathSciNetGoogle Scholar
  88. Skolem, Th. 1952. A theorem on some semi-groups. Det Kongelige Norske Videnskabers Selskabs Forhandlinger 25(18): 72–77.MathSciNetGoogle Scholar
  89. Steinitz, E. 1910. Algebraische Theorie der Körper. Journal für die reine und angewandte Mathematik 137: 167–309; 2nd ed., Walter de Gruyter, Berlin and Leipzig, 1930; reprinted by Chelsea, NY, 1950.Google Scholar
  90. Suschkewitsch, A.K. [Sushkevich] 1934. Über Semi-gruppen. Zapiski Kharkovskogo matematicheskogo obshchestva 8: 25–28.Google Scholar
  91. Sushkevich, A.K. 1935. On the extension of a semigroup to the whole group. Zapiski Kharkovskogo matematicheskogo obshchestva 12: 81–87 (in Ukrainian).Google Scholar
  92. Sushkevich, A.K. 1937a. Foundations of higher algebra, 3rd ed. Moscow, Leningrad: ONTI (in Russian).Google Scholar
  93. Sushkevich, A.K. 1937b. Elements of new algebra. Kharkov, Kiev: DNTVU (in Ukrainian).Google Scholar
  94. Sushkevich, A.K. 1937c. Theory of generalised groups. Kharkov, Kiev: DNTVU (in Russian).Google Scholar
  95. Thibault, R. 1953a. Groupes homomorphes a un demi-groupe: problème d’immersion d’un demi-groupe dans un groupe, Séminaire Châtelet-Dubreil; partie complémentaire: demi-groupes, vol. 7 (1953–1954), exp. no. 13.Google Scholar
  96. Thibault, R. 1953b. Immersion d’un demi-groupe dans un groupe (Méthode de Lambek). Séminaire Châtelet-Dubreil; partie complémentaire: demi-groupes, vol. 7 (1953–1954), exp. no. 20.Google Scholar
  97. Trotter, P.G. 1972. A class of semigroups embeddable in groups. Semigroup Forum 5: 1–13.CrossRefzbMATHMathSciNetGoogle Scholar
  98. van der Waerden, B.L. 1930. Moderne algebra, vol. 1. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  99. van der Waerden, B.L. 1975. On the sources of my book Moderne Algebra. Historia Mathematica 2: 31–40.Google Scholar
  100. Vavřín, Zdeněk. 1995. Miroslav Fiedler and Vlastimil Pták: Life and work. Linear Algebra and its Applications 223/224: 3–29.CrossRefGoogle Scholar
  101. Vavřín, Zdeněk. 1996a. Seventy years of Professor Vlastimil Pták (biography and interview). Czechoslovak Mathematical Journal 46(2): 337–349.zbMATHMathSciNetGoogle Scholar
  102. Vavřín, Zdeněk. 1996b. Seventy years of Professor Vlastimil Pták (biography and interview). Mathematica Bohemica 121(3): 315–327.MathSciNetGoogle Scholar
  103. Vrbová, Pavla. 1985. Sixty years of Professor Vlastimil Pták. Czechoslovak Mathematical Journal 35(4): 662–670.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Shipley, West YorkshireUK

Personalised recommendations