Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 3, pp 355–407 | Cite as

Whittaker’s analytical dynamics: a biography

  • S. C. CoutinhoEmail author
Article

Abstract

Originally published in 1904, Whittaker’s A Treatise on the Analytical Dynamics of Particles and Rigid Bodies soon became a classic of the subject and has remained in print for most of these 108 years. In this paper, we follow the book as it develops from a report that Whittaker wrote for the British Society for the Advancement of Science to its influence on Dirac’s version of quantum mechanics in the 1920s and beyond.

Keywords

Analytical Dynamics Hamiltonian System Poisson Bracket Canonical Transformation Celestial Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, N., and Q.K. Ghori. 1984. Levi-Civita’s theorem for dynamical equations with constraint multipliers. Archive for Rational Mechanics and Analysis 85: 1–13.Google Scholar
  2. Abraham, R. 1967. Foundations of mechanics: A mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the three-body problem, with the assistance of Jerrold E. Marsden. New York: W.A. Benjamin.Google Scholar
  3. Arnold, V.I. 1989. Mathematical methods of classical mechanics, 2nd ed. Berlin: Springer.CrossRefGoogle Scholar
  4. Arnold, V.I., V.V. Kozlov, and A.I. Neishadt. 1997. Mathematical aspects of classical and celestial mechanics, 2nd ed. Berlin: Springer.zbMATHGoogle Scholar
  5. Barrow-Green, J. 2002. Whittaker and Watson’s ‘Modern Analysis’. European Mathematical Society Newsletter 45: 14–15.Google Scholar
  6. Barrow-Green, J. 1997. Poincaré and the three body problem. American Mathematical Society and London Mathematical Society. Providence: AMS Press.Google Scholar
  7. Bairstow, L.E. 1933. George Hartley Bryan. Obit Not Fell R Soc 1: 139–142.CrossRefGoogle Scholar
  8. Besant, W.H. 1893. A treatise on dynamics. Cambridge: Deighton Bell.Google Scholar
  9. Birkhoff, G.D. 1920. Review of a treatise of analytical dynamics. Bulletin of the American Mathematical Society 26: 183.CrossRefMathSciNetGoogle Scholar
  10. Birkhoff, G.D. 1927. Dynamical systems. Colloquium Publications IX, American Mathematical Society (1927).Google Scholar
  11. Bryan, G.H. 1905. Three Cambridge mathematical works. Nature 71: 601–603.CrossRefGoogle Scholar
  12. Bryan, G.H. 1918. Analytical dynamics. Nature 100: 363–364.CrossRefGoogle Scholar
  13. Burnside, W. 1897. Theory of groups of finite order. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  14. Cartan, E. 1922. Leçons sur les Invariant Intégraux. Paris: Hermann.Google Scholar
  15. Cherry, T.M. 1928. Review of Birkhoff’s dynamical systems and the third edition of Whittaker’s analytical dynamics. Mathematical Gazette 195: 198–199.CrossRefGoogle Scholar
  16. Chorlay, R. 2011. “Local-Global”: the first twenty years. Archive for History of Exact Sciences 65: 1–66.CrossRefzbMATHMathSciNetGoogle Scholar
  17. Creese, M.R.S., and T.M. Creese. 2004. Ladies in the laboratory 2. New York: Scarecrow Press.Google Scholar
  18. Crowe, M.J. 1967. A history of vector analysis: The evolution of the idea of a vectorial system. New York: Dover.zbMATHGoogle Scholar
  19. Culverwell, The discrimination of maxima and minima values of single integrals with any number of dependent variables and any continuous restrictions of the variables, the limiting values of the variables being supposed given, Proc. London Math. Soc. 23 (1892), 241–265.Google Scholar
  20. Diliberto, S.P. 1958. Review of Carl Ludwig Siegel’s Vorlesungen über Himmelsmechanik. Bulletin of the American Mathematical Society 64: 192–196.CrossRefMathSciNetGoogle Scholar
  21. Dirac, P.A.M. 1926. The fundamental equations of quantum mechanics. Proceedings of the Royal Society A 109: 642–653; also in [105, 307–320].Google Scholar
  22. Dirac, P.A.M. 1926. Quantum mechanics and a preliminary investigation of the Hydrogen atom. Proceedings of the Royal Society A 110: 561–569; also in [105, p. 417–427].Google Scholar
  23. Dirac, P.A.M. 1947. The principles of quantum mechanics, 3rd ed. Oxford: Oxford University Press.zbMATHGoogle Scholar
  24. Fictitious problems in mathematics. Nature (72) (1905), pp. 56, 78, 102, 127 and 175.Google Scholar
  25. GBM 1917. DR. W. H. BESANT, F.R.S. Nature 99: 310–311.Google Scholar
  26. Geiges, H. 2001. A brief history of contact geometry and topology. Expositiones Mathematicae 19: 25–53.Google Scholar
  27. Goldstein, H. 1950. Classical mechanics. Reading: Addison-Wesley.Google Scholar
  28. Goriely, A. 2001. Integrability and nonintegrability of dynamical systems, advanced series in nonlinear dynamics, vol. 19. Singapore: World Scientific.Google Scholar
  29. Gray, C.G., and E.F. Taylor. 2007. When action is not least. American Journal of Physics 75: 434–458.Google Scholar
  30. Hamilton, W.R. 1828. Theory of systems of rays. Transactions of the Royal Irish Academy 15: 69–174.Google Scholar
  31. Hamilton, W.R. 1830. Supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 16(part I): 1–61.Google Scholar
  32. Hamilton, W.R. 1831. Second supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 16(part II): 93–125.Google Scholar
  33. Hamilton, W.R. 1837. Third supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 17: 1–144.Google Scholar
  34. Hawkins, T. 1991. Jacobi and the birth of Lie’s theory of groups. Archive for History of Exact Sciences 42: 187–278.CrossRefzbMATHMathSciNetGoogle Scholar
  35. Hermann, R. 1962. Lectures on Hamilton-Jacobi-Lie theory and the calculus of variations, I, Notes. Berkeley: University of California, Berkeley.Google Scholar
  36. Hill, G.W. 1886. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and the moon. Cambridge, MA: Press of John Wilson & Son; also Acta 8, 1–36 and in (Hill 1905–1907, Volume 1, pp. 243–270).Google Scholar
  37. Hill, G.W. 1905–1907. The collected mathematical works of George William Hill. The Carnegie Institution of Washington.Google Scholar
  38. Horneffer, K. 1988. Review of the 1988 reprint of a treatise on the analytical dynamics of particles and rigid bodies, Zentralblatt Zbl 0665.70002.Google Scholar
  39. Hunsaker, J.C. 1916. Dynamical stability of aeroplanes. Proceedings of the National Academy of Sciences of the United States of America 2: 278–283.CrossRefGoogle Scholar
  40. Hunsaker, J., and S. MacLane. 1973. Edwin Bidwell Wilson (1879–1964). Biographical Memoir of the National Academy of Sciences.Google Scholar
  41. Jacobi, C.G.J. 1837. Zur Theorie der Variationsrechnung und der Differentialgleichungen. Journal für die angewandte Mathematik 17: 68–82; also in (Jacobi 1881, Volume IV, pp. 39–55).Google Scholar
  42. Jacobi, C.G.J. 1838. Sur le calcul des variations et sur la Thórie des équations différentielles. Journal de Mathématiques Pures et Appliquées, Série 1(3): 44–59.Google Scholar
  43. Jacobi, C.G.J. 2009. Vorlesungen über analytische Mechanik, second edition, edited by A. Clebsch, Georg Reimer (1866); translated as Jacobi’s Lectures on Dynamics, Hindustan Book Agency.Google Scholar
  44. Jacobi, C.G.J. 1881. Gesammelte Werke, edited by C. W. Borchardt, E. Lottner, K. T. W. Weierstrass, 7 volumes.Google Scholar
  45. Jordan, C. 1870. Traité des substituitions. Paris: Gauthier-Villars.Google Scholar
  46. Jost, R. 1964. Poisson brackets: (an unpedagogical lecture). Review of Modern Physics 36: 572–579.CrossRefGoogle Scholar
  47. Jourdain, E.P. 1917. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Mathematical Gazette 131: 145–146.CrossRefGoogle Scholar
  48. Jourdain, E.P. 1917–1918. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Science Progress in the Twentieth Century 12: 345.Google Scholar
  49. Julliard-Tosel, E. 2000. Bruns’ theorem: The proof and some generalizations. Celestial Mechanics and Dynamical Astronomy 76: 241–281.CrossRefzbMATHMathSciNetGoogle Scholar
  50. Kline, M. 1990. Mathematical thought from ancient to modern times, vol. 2. Oxford: Oxford University Press.Google Scholar
  51. Kosmann-Schwarzbach, Y. 2013, La géométrie de Poisson, création du XX\({}^e\) siécle. In Siméon-Denis Poisson: Les mathématiques au service de la science, edited by Yvette Kosmann-Schwarzbach, Les Éditions de l’École polytechnique, pp. 129–172.Google Scholar
  52. Kragh, H. 1990. Dirac: A scientific biography. Cambridge: Cambridge University Press.Google Scholar
  53. Lagrange, J.-L. 1760/1761. Application de la méthode exposée dans la mémoire précédent a la solution de différents problèmes de dynamique, Miscellanea Taurinensia 2: 196–268; also in [59, t. I (1867), 365–468].Google Scholar
  54. Lagrange, J.-L. 1808. Mémoire sur las théorie des variations des éléments des planètes et en particulier des grandes axes de leurs orbites, Mém. de l’Institute de France, also in [59, t. VI, 711–768].Google Scholar
  55. Lagrange, J.-L. 1810. Second mémoire sur las théorie de la variation des arbitraires dans le problèmees de mécanique, dans lequel on simplifie l’application des formules générales a ces problèmes, Mém. de l’Institute de France, also in (Lagrange 1867–1892, t. VI, 809–816).Google Scholar
  56. Lagrange, J.-L. Mécanique Analytique, quatrième édition, publié par Gaston Darboux, Gauthier-Villars t. I (1888), t. II (1889).Google Scholar
  57. Lagrange, J.-L. 1867–1892. Oeuvres de Lagrange, Gauthier-Villars.Google Scholar
  58. Lampe, E. 1918. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”, Jahrbuch über die Fortschritte der Mathematik, 35.0682.01.Google Scholar
  59. Landau, L.D., and E.M. Lifschitz. 1976. Mechanics, course o theoretical physics, vol. 1, 3rd ed. Amsterdam: Elsevier.Google Scholar
  60. Levi-Civita, T., and U. Amaldi. 1927. Lezioni di Meccanica Razionale, vol. II, part 2. Bologna: Nicola Zanichelli.Google Scholar
  61. Lie, S. 1872. Zur Theorie partieller Differentialgleichungen, Göttinger Nachrichten, 480.Google Scholar
  62. Liebmann, H. 1914. Berührungstransformation in Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen III.D.7: 441–502.Google Scholar
  63. Liouville, J. 1855. Note sur les équations de la Dynamique. Journal des Mathématiques Pures et Appliquées XX: 137–138.Google Scholar
  64. Love, A.E.H. 1929. George Hartley Bryan. Journal of London Mathematical Society Series 1(4): 238–240.CrossRefMathSciNetGoogle Scholar
  65. Lützen, J. 1990. Joseph Liouville 1809–1882: master of pure and applied mathematics, Studies in the History of Mathematics and Physical Sciences, 15. Berlin: Springer.Google Scholar
  66. Mackey, G.W. 1963. Mathematical foundations of quantum mechanics. New York: W.A. Benjamin.zbMATHGoogle Scholar
  67. Marsden, J. 1993. Steve Smale and geometric mechanics in Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, 499–516.Google Scholar
  68. McCrea, W.H. 1957. Edmund Taylor Whittaker. Journal of the London Mathematical Society 32: 234–256.CrossRefzbMATHMathSciNetGoogle Scholar
  69. Marle, C.-M. 2009. The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810. Letters in Mathematical Physics 90: 3–21.CrossRefzbMATHMathSciNetGoogle Scholar
  70. Martin, D. 1958. Sir Edmund Taylor Whittaker, F.R.S. Proceedings of the Edinburgh Mathematical Society (2) 11: 1–10.CrossRefzbMATHGoogle Scholar
  71. Mathieu, É. 1874. Mémoire sur les équations différentielles canoniques de la mécanique. Journal des Mathématiques Pures et Appliquées 19: 265–306.Google Scholar
  72. Maxwell, J.C. 1954. A treatise on electricity and magnetism, vol. 1. New York: Dover.zbMATHGoogle Scholar
  73. Philip Edward Bertrand Jourdain. Proc London Math Soc 19: 59–60 (1921).Google Scholar
  74. Poincaré, H. Mémoire sur les fonctions zétafuchsiennes. Acta Mathematica IV (1884), 211–278; also in (Poincaré 1916–1954, Volume 2, pp. 402–462).Google Scholar
  75. Poincaré, H. 1890. Sur le problème des trois corps et les équations de la dynamique. Acta 13 1–270 also in (Poincaré 1916–1954, Volume VII, 262–479).Google Scholar
  76. Poincaré, H. 1899. Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, t. I (1892), t. II (1893), t. III (1899).Google Scholar
  77. Poincaré, H. 1910. Leçons de mécanique céleste : professées à la Sorbonne, Gauthier-Villars t. I (1905), t. II partie 1 (1907), t. II partie 2 (1909), t. III (1910).Google Scholar
  78. Poincaré, H. 1916–1954. Oeuvres de Henri Poincaré, 12 volumes, Gauthier-Villars.Google Scholar
  79. Poisson, S.-D. 1809. Sur la variation des constants arbitraires dans le question de Mécanique. Journal de l’Ecole Polytechnique, 15éme cahier VIII: 266–344.Google Scholar
  80. Prange, G. 1935. Die Allgemeinen Integrationsmethoden der Analytischen Mechanik, Encyklopädie der Mathematischen Wissenschaften IV.12.U13, 505–804.Google Scholar
  81. Pulte, H. 2005. Joseph Louis Lagrange, Méchanique Analitique, First Edition (1788), in Landmark Writings in Western Mathematics 1640–1940, edited by I. Grattan-Guiness, Elsevier.Google Scholar
  82. Reeb, G. 1952. Sur certaines propriétés topologiques des trajectoires des systémes dynamiques, Acad. Roy. Belgique, Cl. Sci., Mém., Coll. 8\(^\circ \) 27(9), 64 S.Google Scholar
  83. Routh, E.J. 1860. An elementary treatise on the dynamics of a system of rigid bodies: With numerous examples. London: MacMillan.Google Scholar
  84. Routh, E.J. 1882. The elementary part of a treatise on the dynamics of a system of rigid bodies, being part I of a treatise on the whole subject. London: MacMillan.Google Scholar
  85. Routh, E.J. 1884. The advanced part of a treatise on the dynamics of a system of rigid bodies, being part II of a treatise on the whole subject. London: MacMillan.Google Scholar
  86. Routh, E.J. 1891. A treatise on analytic statics. Cambridge: Cambridge University Press.Google Scholar
  87. Routh, E.J. 1898. A treatise on dynamics of a particle with numerous examples. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  88. Siegel, C.L. 1943. Symplectic geometry. American Journal of Mathematics 65: 1–86.CrossRefMathSciNetGoogle Scholar
  89. Siegel, C.L. 1956. Vorlesungen über Himmelsmechanik. Berlin: Springer.CrossRefGoogle Scholar
  90. Siegel, C.L., and J. Moser. 1971. Lectures on celestial mechanics, translation by Charles I. Kalme. Berlin: Springer.CrossRefGoogle Scholar
  91. Smale, S. 1967. Differentiable dynamical systems. Bulletin of the American Mathematical Society 73: 747–817.CrossRefzbMATHMathSciNetGoogle Scholar
  92. Sneddon, I.N. 1980. Review of “Mathematical methods of classical mechanics” and “A course of mathematical physics, vol. 1: Classical dynamical systems”. Bulletin of the American Mathematical Society (N.S.) 2: 346–352.CrossRefMathSciNetGoogle Scholar
  93. Souriau, J.M. 1970. Structure des systèmes dynamiques. Paris: Dunod.zbMATHGoogle Scholar
  94. Sommerfeld, A. 1921. Atombau und Spektrallinien, 2nd ed. Braunschweig: Friedr. Vieweg & Sohn.Google Scholar
  95. Sternberg, S. 1964. Lectures on differential geometry. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  96. Sternberg, S. 1980. Review of Ralph Abraham and Jerrold E. Marsden, “Foundations of mechanics”. Bulletin of the American Mathematical Society (N.S.) 2: 378–387.CrossRefMathSciNetGoogle Scholar
  97. Temple, G. 1956. Edmund Taylor Whittaker. Biographical memoirs of fellows of the royal society 2: 299–325.Google Scholar
  98. Thirring, W. 1978. A course of mathematical physics, vol. 1, translated by Evans M. Harrel. Berlin: Springer.Google Scholar
  99. Todhunter, I. 1962. A history of the calculus of variations during the nineteenth century. Berlin: Chelsea.Google Scholar
  100. Truesdell, C. 1984. An idiot’s fugitive essays on science. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  101. van Kampen, E.R., and A. Wintner. 1936. On the canonical transformations of Hamiltonian systems. American Journal of Mathematics 58: 851–863.CrossRefzbMATHMathSciNetGoogle Scholar
  102. van der Waerden, B.L. 1967. Sources of quantum mechanics. New York: Dover.zbMATHGoogle Scholar
  103. Verhulst, F. 2012. Henri Poincaré: impatient genius. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  104. Warwick, A. 2003. Masters of theory: Cambridge and the rise of mathematical theory, Chicago.Google Scholar
  105. Watson, G.N., and E.T. Whittaker. 1963. A course of modern analysis, 4th ed. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  106. Weyl, H. 1939. The classical groups. Englewood Cliffs: Princeton.Google Scholar
  107. Whittaker, E.T. 1900. Report on the progress of the solution of the problem of three bodies, in Report of the Sixty-Ninth Meeting of the British Association for the Advancement of Science held at Dover in September 1899, John Murray.Google Scholar
  108. Whittaker, E.T. 1902. On the solution of dynamical problems in terms of trigonometric series. Proceedings of the London Mathematical Society 34: 206–221.zbMATHMathSciNetGoogle Scholar
  109. Whittaker, E.T. 1940. The Hamiltonian revival. The Mathematical Gazette 24(260): 153–158.CrossRefGoogle Scholar
  110. Whittaker, E.T. 1904. A treatise on the analytical dynamics of particles and rigid bodies, 1st ed. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  111. Whittaker, E.T. 1910. A history of the theories of aether and electricity from the age of Descartes to the close of the nineteenth century. London: Longmans.zbMATHGoogle Scholar
  112. Whittaker, E.T. 1917. A treatise on the analytical dynamics of particles and rigid bodies, 2nd edn. Cambridge: Cambridge University Press. Reprinted by Pranava Books (2008).Google Scholar
  113. Whittaker, E.T. 1999. A treatise on the analytical dynamics of particles and rigid bodies, reprint of the fourth edition with a forward by W. H. McCrea, Cambridge University Press, Cambridge.Google Scholar
  114. Whittaker, E.T. 1916–1917. On the Adelphic integral of the differential equations of dynamics. Proceedings of the Royal Society of Edinburgh 37: 95–116.Google Scholar
  115. Whittaker, E.T. 1951. A history of the theories of aether and electricity: The classical theories. London: Nelson.zbMATHGoogle Scholar
  116. Whittaker, E.T. 1953. A history of the theories of aether and electricity: The modern theories 1900–1926. London: Nelson.zbMATHGoogle Scholar
  117. Wilson, E.B. 1901. Vector analysis: A text-book for the use of students of Mathematics and Physics founded upon the lectures of J. Willard Gibbs. New York: Charles Scribner’s Sons.Google Scholar
  118. Wilson, E.B. 1906. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Bulletin of the American Mathematical Society 12: 451–458.CrossRefMathSciNetGoogle Scholar
  119. Wintner, A. 1934. On the linear conservative dynamical systems. Annali di Matematica Seria IV 13: 14–112.MathSciNetGoogle Scholar
  120. Wintner, A. 1941. The analytical foundations of celestial mechanics. Englewood Cliffs: Princeton University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Ciência da ComputaçãoInstituto de Matemática, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations