Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 4, pp 529–545 | Cite as

On Jacobi’s transformation theory of elliptic functions

  • Alberto Cogliati
Article
  • 352 Downloads

Abstract

The main interpretative challenge set by the Fundamenta Nova Theoriae Functionum Ellipticarum lies in Jacobi’s transformation theory upon which the entire theoretical edifice of the treatise depends. Unfortunately, Jacobi did not convey any indication of how he attained his general formulae for rational transformations of elliptic functions. He limited himself to providing a posteriori verification of the validity of his claims. The aim of this paper is precisely to describe the heuristic path by which in 1827 Jacobi succeeded in finding these transformation formulae. The proposed historical reconstruction will hopefully shed new light upon the emergence in Jacobi’s work of the inversion process of elliptic integrals of the first kind and thus of the elliptic function sinam\(u\) itself.

Keywords

Elliptic Function Rational Transformation Elliptic Integral Transformation Theory Conditional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abel, N.H. 1827. Recherches sur les fonctions elliptiques. Journal für die reine und angewandte Mathematik 2: 101–181.CrossRefzbMATHGoogle Scholar
  2. Abel, N.H. 1828. Recherches sur les fonctions elliptiques. Journal für die reine und angewandte Mathematik 3: 160–190. Also in [Abel’s Oeuvres complètes, I, 263–388].Google Scholar
  3. Abel, N.H. 1881. Oeuvres complétes de Niels Henrik Abel, eds. Sylow, L., and S. Lie, 2 vol. Christiania (Oslo): Grøndahl and søn.Google Scholar
  4. Bottazzini, U., and J. Gray. 2013. Hidden Harmony—Geometric Fantasies: The rise of complex function theory. New York: Springer.CrossRefGoogle Scholar
  5. Gauss, C.F. 1818. Determinatio attractionis quam in punctum quodvis positionis datae exerceret planeta si eius massa per totam orbitam ratione temporis quo singulae partes describuntur uniformiter esset dispertita, Commentationes societatis regiae scientiarum Gottingensis recentiores, vol. iv. pp 21–48Google Scholar
  6. Houzel, C. 2004. The work of Niels Henrik Abel, in [Laudal and Piene, p. 21–179].Google Scholar
  7. Jacobi, C.G.J. 1827a. De singulari quadam duplicis Integralis transformatione. Journal für die reine und angewandte Mathematik 2: 234–242. Also in [Jacobi’s Werke, III, p. 55–66].Google Scholar
  8. Jacobi, C.G.J. 1827b. Extraits de deux lettres de Mr. Jacobi de l’Université de Königsberg à l’éditeur, Astronomische Nachrichten, Nr. 123:33–38. Also in [Jacobi’s Werke, I, p. 29–36].Google Scholar
  9. Jacobi, C.G.J. 1827c. Demonstratio theorematis ad theoriam functionum ellipticarum spectantis, Astronomische Nachrichten, Nr. 127: 133–142. Also in [Jacobi’s Werke, I, p. 37–48].Google Scholar
  10. Jacobi C.G.J. 1829. Fundamenta nova theoriae functionum ellipticarum, Sumptibus fratrum Bornträger, Regiomonti. Also in [Jacobi’s Werke, I, p. 49–239].Google Scholar
  11. Jacobi, C.G.J. 1881–1891. C.G.J. Jacobi’s Gesammelte Werke. Borchardt C.W., and Weierstrass, K. (eds). 7 vols. and Supplementband. G. Reimer, Berlin.Google Scholar
  12. Koenigsberger, L. 1904. Festschrift zur Feier der hundersten wiederkehr seines Geburstages. Leipzig: Teubner.Google Scholar
  13. Laudal, O.A., and R. Piene. (eds.) 2004. The legacy of Niels Henrik Abel: The Abel bicentennial, Oslo 2002. New York: Springer.Google Scholar
  14. Legendre, A.-M. 1825. Traité des fonctions elliptiques et des intégrales euleriennes. Paris: Tome Premier, Huzard-Courcier.Google Scholar
  15. Legendre, A.-M. 1828a. Note sur les nouvelles propriétés des fonctions elliptiques découvertes par M. Jacobi. Astronomische Nachrichten, Nr. 130: 201–205.CrossRefGoogle Scholar
  16. Legendre, A.-M. 1828b. Traité des fonctions elliptiques et des intégrales euleriennes. Paris: Tome Troisième, Huzard-Courcier.Google Scholar
  17. Plana, G. 1829. Méthode élémentaire pour décrouvir et démontrer la possibilité des nouveaux théorèmes sur la théorie des transcendentes elliptiques publiés par Mr. Jacobi [etc.]. Memorie della Reale Accademia delle Scienze di Torino 33: 333–356.Google Scholar
  18. Poisson, S.D. 1831. Rapport sur l’ouvrage de M. Jacobi intitulé: Fundamenta nova theoriae functionum ellipticarum, (Lu à l’Académie des Sciences, le 21 décembre 1829). Mémoires de l’Académie Royale de Sciences de l’Institut de France 10: 73–117.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Università degli Studi di MilanoMilanoItaly

Personalised recommendations