Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 4, pp 409–497 | Cite as

The coming-to-be of Hansen’s method

  • Curtis Wilson
  • William Harper
Article
  • 194 Downloads

Abstract

This article by Curtis Wilson is an account of the origin of Hansen’s powerful systematic method for finding contributions of higher order perturbations in celestial mechanics. Hansen’s method was developed in the course of improving on Laplace’s treatment of the mutual perturbations of Jupiter and Saturn. This method, an entirely new way of doing celestial mechanics when it first appeared, later made possible the successful treatment of the complicated motions of our moon (see Wilson 2010). In this paper Wilson gives a brief historical introduction followed by an account of relevant technical details of the Laplacian background, an account illustrating technical details in Hansen’s initial development in his Disquisitions of 1829, and a treatment illustrating details contributing to the achievement of Hansen’s more refined development in his Untersuchung of 1831. These details include conditional equations Hansen provides for checking the accuracy of calculations. Wilson also includes a detailed assessment showing the extraordinary improvement in empirical accuracy of Hansen’s treatment over the best earlier treatment of the Jupiter-Saturn  interactions.

References

  1. Anding, Ernst. 1924. Peter Andreas Hansen. Zur Feier der fünfzigsten Wiederkehr seines Todestages vorgetragen in der Sitzung der Vereinigung für Gothaische Geschichte und Altertumsforschung vom 4 März. Gotha.Google Scholar
  2. Bessel, Friedrich Wilhelm. 1826. Untersuchung des Theils der planetarischen Storungen, welcher aus der Bewegung der Sonne entsteht, Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. Aus dem Jahre 1824. Berlin.Google Scholar
  3. Bessel, Friedrich Wilhelm. 1828. Ueber die Bestimmung des Gesetzes einer periodischen Erscheinung. Astronomische Nachrichten 6(136): 333–348.CrossRefGoogle Scholar
  4. Bouvard, Alexis and Poisson, Siméon Denis. 1829. Connoissance des Terns pour I’année 1832. Paris.Google Scholar
  5. Bouvard, Alexis. 1821. Tables astronomiques: de Jupiter Saturne et Uranus. Paris.Google Scholar
  6. Brower, Dirk, and G.M. Clemence. 1961. Methods of celestial mechanics. New York and London: Academic.Google Scholar
  7. Brown, E.W. 1896. An introductory treatise on the lunar theory. Cambridge: The University Press, 1896; Dover Reprint, 1960.Google Scholar
  8. Cayley, Arthur. 1857. On Hansen’s lunary theory. Quarterly Mathematical Journal I: 112–125.Google Scholar
  9. Cayley, Arthur. 1859. A memoir on the problem of disturbed elliptic motion. Memoirs of the Royal Astronomical Society XXVII: 1–29.Google Scholar
  10. Cayley, Arthur. 1890. The collected mathematical works of Arthur Cayley. Cambridge: University Press.Google Scholar
  11. de Pontécoulant, Philippe Gustave Doulcet. 1835. Mémoire sur la partie des coefficiens des grandes inégalités de Jupiter et de Saturne, qui dépendent du carré des forces perturbatrices, Mémoires présentés par divers savantes à I’Académie Royale des Sciences de I’lnstitut de France, Paris, Vol. 6, pp. 389–510.Google Scholar
  12. de Pontécoulant. 1836. Additions to the Connaissance des tems pour I’année 1836, pp. 21–22.Google Scholar
  13. de Pontécoulant. 1837. Additions to the Connaissance des tems pour I’année 1837, pp. 40–62.Google Scholar
  14. Gauss, Karl Friedrich. 1963. Theory of the motion of the heavenly bodies moving about the Sun in conic sections (tr. Charles Henry Davis: Dover Publications).Google Scholar
  15. Grattan-Guinness, Ivor. 1990. Convolutions in French Mathematics. Basel, Boston, Berlin: Birkhäuser.zbMATHGoogle Scholar
  16. Hansen, Peter Andreas. 1829. Disquisitiones circa theoriam perturbationum quae motum corporum coelestium afficiunt. Astronomische Nachrichten, VII(166–168): 417-448, 465–484.Google Scholar
  17. Hansen, Peter Andreas. 1831. Untersuchung über die gegenseitigen Störungen des Jupiters und Saturns. Berlin: Academy of Science.Google Scholar
  18. Hansen, Peter Andreas. 1834. Astronomische Nachrichten, XI(262): 389–396.Google Scholar
  19. Hansen, Peter Andreas. 1838a. Fundamenta nova investigationis orbitae verae quam luna perlustrat. Gotha.Google Scholar
  20. Hansen, Peter Andreas. 1838b. Note sur la théorie des perturbations planétaires. Astronomische Nachrichten 15(348): 206.Google Scholar
  21. Hansen, Peter Andreas. 1842. Astronomische Nachrichten, XIX(435–437): 33–92.Google Scholar
  22. Hill, George William. 1890. A new theory of Jupiter and Saturn, astronomical papers of the American ephemeris, vol. IV. Washington, D.C.: Navy Department.Google Scholar
  23. Hill, George William. 1906. The collected mathematical works of George William Hill. Washington, D.C.: Carnegie Institution.Google Scholar
  24. Jacobi, Carl Gustav Jacob. 1851. Mathematische Werke. De Gruyter.Google Scholar
  25. Lagrange, Joseph-Louis. 1873. Oeuvres de Lagrange, Vol. 6 (ed. J. A. Serret; Paris).Google Scholar
  26. Lalande, Joseph Jêrome le Français de. 1792. Astronomie, 3 Vols. Paris: (For Maria Margaretha Kirch.).Google Scholar
  27. Laplace, Pierre-Simon. 1788. Théorie de Jupiter et de Saturne. Mémoires de I’Académie royale des Sciences de Paris, année 1785, pp. 33–160.Google Scholar
  28. Laplace, Pierre-Simon. 1826. Mémoire sur les deux grandes inégalités de Jupiter et de Saturne. Connaissance des Tems pour I’année 1829. Paris.Google Scholar
  29. Laplace, Pierre-Simon. 1835. Oeuvres complètes de Laplace. Paris.Google Scholar
  30. Laplace, Pierre-Simon. 1966. Celestial Mechanics (translated, with a commentary, by Nathaniel Bowditch; reprint). Bronx, N.Y.: Chelsea Publishing Company.Google Scholar
  31. Lubbock, John W. 1834. The theory of the Moon. London: Charles Knight.Google Scholar
  32. Plana, Giovanni. 1826. Mémoire sur différens Points relatifs à la Théorie des Perturbations des Planétes exposée dans la Mécanique celeste. Memoirs of the Astronomical Society of London II: 325–412.Google Scholar
  33. Plana, Giovanni. 1827. Addition. Mémorie of the Accademia delle Scienze of Turin, 31: 401–408.Google Scholar
  34. Ross, Sheldon M. 2000. Introduction to probability and statistics for engineers and scientists. New York: Academic.zbMATHGoogle Scholar
  35. Schlesinger, Frank. 1937. Recollections of George William Hill, Publications of the Astronomical Society of the Pacific, 49: 5–12.Google Scholar
  36. Seidelmann, P. Kenneth (ed.). 1992. Explanatory supplement to the astronomical almanac. Mill Valley: University Science Books.Google Scholar
  37. Whittaker, Edmund Taylor, and Robinson George. 1967. The calculus of observations: An introduction to numerical analysis. New York: Dover.Google Scholar
  38. Wilson, Curtis. 1980. Perturbations and solar tables from Lacaille to Delambre: The rapprochement of observation and theory, part II. Archive for History of Exact Sciences 22: 53–304.CrossRefMathSciNetGoogle Scholar
  39. Wilson, Curtis. 1985. The great inequality of Jupiter and Saturn: From Kepler to Laplace. Archive for History of Exact Sciences 33: 15–290.CrossRefMathSciNetGoogle Scholar
  40. Wilson, Curtis. 1993. Clairaut’s calculation of the eighteenth-century return of Halley’s comet. Journal for the History of Astronomy xxiv(1993): 1–15.Google Scholar
  41. Wilson, Curtis. 2010. The Hill-Brown Theory of the moon’s motion: Its coming-to-be and short-lived Ascendency (1877–1984). Heidelberg: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.St. John’s CollegeAnnapolisMaryland
  2. 2.University of Western OntarioLondonCanada

Personalised recommendations