Skip to main content
Log in

Galileo’s quanti: understanding infinitesimal magnitudes

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In On Local Motion in the Two New Sciences, Galileo distinguishes between ‘time’ and ‘quanto time’ to justify why a variation in speed has the same properties as an interval of time. In this essay, I trace the occurrences of the word quanto to define its role and specific meaning. The analysis shows that quanto is essential to Galileo’s mathematical study of infinitesimal quantities and that it is technically defined. In the light of this interpretation of the word quanto, Evangelista Torricelli’s theory of indivisibles can be regarded as a natural development of Galileo’s insights about infinitesimal magnitudes, transformed into a geometrical method for calculating the area of unlimited plane figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See Giusti (1986) and Giusti(1993), Palmieri (2001).

  2. See Drake (1974a, 1979), Hill (1986), Naylor (1990), Palmieri (2006), Wisan (1974).

  3. First edition 1612, now available on line at the url: http://vocabolario.sns.it/html/index.html.

  4. The original: “che ha quantità”.

  5. Drake (1974a, p. xxxvi).

  6. I shall quote Galileo’s original texts from Galilei (1890–1909), by giving the volume in Roman and the page in Arabic numbers.

  7. The English translation from which I shall quote is Drake (1974a).

  8. Drake (1974a, p. 190), Galilei (1890–1909, VIII, p. 190).

  9. Drake (1974a, p. 154). The original Latin reads “a quiete recedens, temporibus aequalibus aequalia celeritatis momenta sibi superaddit” (Galilei 1890–1909, VIII, p. 198).

  10. Galileo’s original text is “gradum seu momentum velocitatis” (Galilei 1890–1909, VIII, p. 198, l. 10). “Momentum of swiftness” must not be interpreted as “mechanical moment”, which points to the static effect of the heaviness of a body, a technical word which belongs to pre-modern studies on machines. Mechanical moment varies according to the distance of the body from the centre of rotation that is the length of a lever arm as in the principle of the lever. As far as the evolution of the meaning of “momentum of swiftness” is concerned, see Galluzzi (1979), in particular p. 364, footnote 2.

  11. Drake (1974a, p. 157), Galilei (1890–1909, VIII, p. 200).

  12. Drake (1974a, p. 157), Galilei (1890–1909, VIII, pp. 200–201).

  13. Drake (1974a, p. 157), Galilei (1890–1909, VIII, p. 201).

  14. Drake (1974a, p. 22), Galilei (1890–1909, VIII, p. 61).

  15. Drake (1974a, pp. 27–28), Galilei (1890–1909, VIII, p. 67).

  16. Drake (1974a, p. 28), Galilei (1890–1909, VIII, p. 68).

  17. The problem of the wheel (see Fig. 1) is the paradox of two concentric circles rotating around their common centre (\(A\)) and on a surface (BF). In the first case, two points (\(C\) and \(B\)) on each one of them draw two circumferences with different length around the common centre \(A\). In the second case, the same points draw two identical straight lines (CE and BF). It was solved firstly by Jean Jacques d’Ortous de Mairan.

    Fig. 1
    figure 1

    The diagram exemplifying the problem of the wheel (Drake 1974a, p. 29; Galilei 1890–1909, VIII, p. 68)

  18. Drake (1974a, pp. 32–33), Galilei (1890–1909, VIII, p. 71).

  19. Drake (1974a, pp. 31–32), Galilei (1890–1909, VIII, p. 70).

  20. Drake (1974a, p. 32), Galilei (1890–1909, VIII, p. 71).

  21. Galileo is considering a circumference consisting of a countable infinity of points. Therefore, its length is the sum of a countable infinity of magnitudes.

  22. The modern technical term infinitesimal is used here to describe a magnitude that, as Galileo understands it, is extremely small, as small as can possibly be, but not zero in size.

  23. Galileo seems to have established a sort of relation between points and numbers as if he wanted to measure points in some ways. In Euclidean geometry, a point has no dimension, neither length, width, nor depth, so we can identify the dimension of a point as zero.

  24. Drake (1974a, p. 33), Galilei (1890–1909, VIII, p. 71).

  25. Drake (1974a, p. 33), Galilei (1890–1909, VIII, pp. 71–72).

  26. Drake (1974a, p. 33), Galilei (1890–1909, VIII, p. 72).

  27. (Galluzzi (2001, p. 74).

  28. “We are concerned, in the problem of ARISTOTLE’S Wheel, with two matters, (1) the problem of motion, particularly the composition of motions, and (2) the point-to-point correspondence of paths of different lengths. These matters are, to be sure, only apparently independent, for both are, at least from one view-point, ultimately bound up with the problems of continuity, infinity, and the number system” (Drabkin 1950, p. 169).

  29. Drake (1974a, p. 42), Galilei (1890–1909, VIII, p. 80).

  30. Drake (1974a, pp. 38–40), Galilei (1890–1909, VIII, p. 77).

  31. Drake (1974a, p. 43), Galilei (1890–1909, VIII, p. 81).

  32. Drake (1974a, p. 40), Galilei (1890–1909, VIII, p. 78).

  33. Drake (1974a, pp. 44–45), Galilei (1890–1909, VIII, p. 82).

  34. Drake (1974a, p. 44), Galilei (1890–1909, VIII, p. 81).

  35. Drake (1974a, p. 53), Galilei (1890–1909, VIII, pp. 91–92).

  36. Drake (1974a, p. 53), Galilei (1890–1909, VIII, p. 91).

  37. Drake (1974a, p. 53–54), Galilei (1890–1909, VIII, p. 92).

  38. For studies of Torricelli, see Bortolotti (1925, 1928, 1939), Jacoli (1875), Belloni (1987), De Gandt (1987, 1991a, b, 1992, 1995), Giusti (1989), Festa (1992), Loria (1897).

  39. I shall quote Torricelli’s original texts from Torricelli (1919–1944), by giving the volume in Roman and the page in Arabic numbers. Here, Torricelli (1919–1944, I, part 2, pp. 1–43 and pp. 20–23).

  40. Torricelli (1919–1944, I, part 2, pp. 20–27). There exists another folder, which has an identical title and in which there are notes very similar (Torricelli 1919–1944, I, part 2, pp. 46–48). There are also examples involving curves.

  41. Torricelli (1919–1944, I, part 2, pp. 415–432).

  42. Torricelli (1919–1944, I, part 2, pp. 417–426).

  43. Cavalieri’s scholars have proved that the notion of a whole of lines, called aggregate, is neither to be thought of as a set of lines in the modern sense nor as a figure compounded of line-like indivisibles. See Giusti (1980), Andersen (1985), De Gandt (1991b).

  44. Torricelli (1919–1944, I, part 2, p. 320). Translation of Curtis Wilson in De Gandt (1995, p. 188). I shall quote English translations of Torricelli’s texts by referring to De Gandt (1995). When not specified, the translation is mine.

  45. Torricelli (1919–1944, I, Part 2, pp. 320–321).

  46. Drake (1974a, p. 48), Galilei (1890–1909, VIII, p. 86).

  47. Drake (1974a, p. 60), Galilei (1890–1909, VIII, p. 99).

  48. Drake (1974a, p. 56), Galilei (1890–1909, VIII, p. 95).

  49. Numerous scholars have studied Galileo’s physical atomism. Here is a selection of the major works: Baldini (1977), Redondi (1985), Murdoch (2001), Shea (2001), Galluzzi (2001), Biener (2004).

References

  • Andersen, Kirsti. 1985. Cavalieri’s method of indivisibles. Archive for History of Exact Sciences 4: 291–367.

    Google Scholar 

  • Baldini, Ugo. 1977. La struttura della materia nel pensiero di Galileo. De Homine LVI–LVIII: 1–74.

    Google Scholar 

  • Belloni, Lanfranco. 1987. Torricelli et son époque. Le triumvirat des élèves de Castelli: Magiotti, Nardi et Torricelli. In L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.

    Google Scholar 

  • Biener, Z. 2004. Galileo’s first New Science: The science of matter. Perspectives on Science XII: 262–287.

    Article  MathSciNet  Google Scholar 

  • Bortolotti, Ettore. 1925. La memoria ‘De Infinitis Hyperbolis’ di Torricelli. Esposizione sistematica. Archivio di storia della scienza 6: 139–152.

    Google Scholar 

  • Bortolotti, Ettore. 1928. I progressi del metodo infinitesimale nell’‘Opera geometrica’ di Evangelista Torricelli. Periodico di matematiche 8(1): 19–59.

    MATH  MathSciNet  Google Scholar 

  • Bortolotti, Ettore. 1939. L’Œuvre géométrique d’Evangéliste Torricelli. Monatshefte für Mathematik und Physik 48. Reprinted in L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 111–146. Nice: Les Belles Lettres.

  • De Gandt, François. 1987. Les indivisibles de Torricelli. In L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.

    Google Scholar 

  • De Gandt, François. 1991a. Sur la détermination du mouvement selon Aristote et les conditions d’une mathématisation. In La physique d’Aristote et les conditions d’une science de la nature, ed. François De Gandt, and Pierre Souffrin, 85–105. Paris: VRIN.

    Google Scholar 

  • De Gandt, François. 1991b. Cavalieri’s indivisibles and Euclid’s Canons. In Revolution and continuity, essays in the history and philosophy of early modern science, ed. R. Ariew, and P. Barker, 157–182. Washington: Catholic University of America.

    Google Scholar 

  • De Gandt, François. 1992. L’évolution de la théorie des indivisibles et l’apport de Torricelli. In Geometria e atomismo nella scuola galileiana, ed. Massimo Bucciantini e Maurizio Torrini, 103–118. Firenze: L.S. Olschki.

    Google Scholar 

  • De Gandt, François. 1995. Force and geometry in Newton’s principia. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Drabkin, Israel E. 1950. Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198.

    Article  Google Scholar 

  • Drake, Stillman. 1974a. Galileo Galilei: Two New Sciences. Madison: The University of Wisconsin Press.

    Google Scholar 

  • Drake, Stillman. 1974b. Mathematics and discovery in Galileo’s physics. Historia Mathematica 1: 129–150.

    Article  MATH  MathSciNet  Google Scholar 

  • Drake, Stillman. 1979. Galileo’s notes on motion. Supplement of Annali dell’Istituto e Museo di Storia della Scienza 3. Firenze: Istituto e Museo di Storia della Scienza.

  • Festa, Egidio. 1992. La notion d’ ‘agrégat d’indivisibles’ dans la constitution de la cinématique galiléenne: Cavalieri, Galilée, Torricelli. Etudes sur Galilée 45(2–3): 307–336.

    MATH  MathSciNet  Google Scholar 

  • Galilei, Galileo. 1890–1909. Le opere di Galileo Galilei. In Edizione Nazionale, 20 vols, ed. Antonio Favaro. Florence: Barbèra.

  • Galluzzi, Paolo. 1979. Momento. Roma: Edizioni dell’Ateneo & Bizzarri.

    Google Scholar 

  • Galluzzi, Paolo. 2001. Tra atomi e indivisibili. La materia ambigua di Galileo. Lessico Intellettuale Europeo. Firenze: Leo S. Olschki Editore.

    Google Scholar 

  • Giusti, Enrico. 1980. Bonaventura Cavalieri and the theory of indivisibles. Rome: Cremonese.

    MATH  Google Scholar 

  • Giusti, Enrico. 1986. Ricerche galileiane: il trattato ‘De motu aequabili’ come modello della teoria delle proporzioni. Bollettino di Storia delle Scienze Matematiche 6: 89–108.

    MATH  MathSciNet  Google Scholar 

  • Giusti, Enrico. 1989. Evangelista Torricelli continuatore di Galileo. Torricelliana 40: 13–25.

    Google Scholar 

  • Giusti, Enrico. 1993. Euclides reformatus: la teoria delle proporzioni nella scuola galileiana. Torino: Bollati-Boringhieri.

    Google Scholar 

  • Hill, David K. 1986. Galileo’s work on 116v: A new analysis. Isis 77: 283–291.

    Article  MATH  MathSciNet  Google Scholar 

  • Jacoli, Ferdinando. 1875. Evangelista Torricelli ed il metodo delle tangenti detto metodo di Roberval. Bollettino di bibliografia e di storia delle scienze matematiche e fisiche 8: 265–304.

    Google Scholar 

  • Koyré, Alexandre. 1939. Études galiléennes. Paris: Hermann.

    Google Scholar 

  • Loria, Gino. 1897. Evangelista Torricelli e la prima rettificazione di una curva. Atti della Reale Accademia dei Lincei V/6: 318–323.

    Google Scholar 

  • Murdoch, J.E. 2001. The medieval and renaissance tradition of ‘Minima naturalia’. Late Medieval and Early Modern Corpuscolar Matter Theories 91–131.

  • Naylor, Ronald H. 1990. Galileo’s method of analysis and synthesis. Isis 81: 675–707.

    Article  MathSciNet  Google Scholar 

  • Paolo, Palmieri. 2001. The obscurity of the equimultiples. Archive for History of Exact Sciences 55: 555–597.

    Article  MATH  MathSciNet  Google Scholar 

  • Paolo, Palmieri. 2006. A new look at Galileo’s search for mathematical proofs. Archive for History of Exact Sciences 60: 285–317.

    Article  MathSciNet  Google Scholar 

  • Redondi, Pietro. 1985. Atomi, indivisibili e dogma. Quaderni Storici XX/59: 529–573.

    Google Scholar 

  • Roux, Sophie. 2010. Forms of mathematization (14th–17th centuries). Early Science and Medicine 15:4–5. doi:10.1163/157338210X516242.

  • Shea, William. 1983. Nature mathematized. Historical and philosophical case studies in classical modern natural philosophy. Dordrecht: Kluwer.

    Google Scholar 

  • Shea, William R. 2001. Galileo e l’atomismo. Acta Philosophica 10/2:257–272. Roma: Armando Editore.

    Google Scholar 

  • Torricelli, Evangelista. 1919–1944. Opere. Eds. Gino Loria and Giuseppe Vassura. Faenza: G. Montanari.

  • Wisan, Winifred L. 1974. The New Science of motion: A study of Galileo’s ‘De motu locali. Archive for History of Exact Sciences 13: 103–306.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Bascelli.

Additional information

Communicated by: Noel Swerdlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bascelli, T. Galileo’s quanti: understanding infinitesimal magnitudes. Arch. Hist. Exact Sci. 68, 121–136 (2014). https://doi.org/10.1007/s00407-013-0124-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-013-0124-2

Keywords

Navigation