Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 2, pp 121–136 | Cite as

Galileo’s quanti: understanding infinitesimal magnitudes

  • Tiziana BascelliEmail author
Article

Abstract

In On Local Motion in the Two New Sciences, Galileo distinguishes between ‘time’ and ‘quanto time’ to justify why a variation in speed has the same properties as an interval of time. In this essay, I trace the occurrences of the word quanto to define its role and specific meaning. The analysis shows that quanto is essential to Galileo’s mathematical study of infinitesimal quantities and that it is technically defined. In the light of this interpretation of the word quanto, Evangelista Torricelli’s theory of indivisibles can be regarded as a natural development of Galileo’s insights about infinitesimal magnitudes, transformed into a geometrical method for calculating the area of unlimited plane figures.

Keywords

Infinite Number Geometrical Object Plane Figure Quanti Void Quante Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen, Kirsti. 1985. Cavalieri’s method of indivisibles. Archive for History of Exact Sciences 4: 291–367.Google Scholar
  2. Baldini, Ugo. 1977. La struttura della materia nel pensiero di Galileo. De Homine LVI–LVIII: 1–74.Google Scholar
  3. Belloni, Lanfranco. 1987. Torricelli et son époque. Le triumvirat des élèves de Castelli: Magiotti, Nardi et Torricelli. In L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.Google Scholar
  4. Biener, Z. 2004. Galileo’s first New Science: The science of matter. Perspectives on Science XII: 262–287.CrossRefMathSciNetGoogle Scholar
  5. Bortolotti, Ettore. 1925. La memoria ‘De Infinitis Hyperbolis’ di Torricelli. Esposizione sistematica. Archivio di storia della scienza 6: 139–152.Google Scholar
  6. Bortolotti, Ettore. 1928. I progressi del metodo infinitesimale nell’‘Opera geometrica’ di Evangelista Torricelli. Periodico di matematiche 8(1): 19–59.zbMATHMathSciNetGoogle Scholar
  7. Bortolotti, Ettore. 1939. L’Œuvre géométrique d’Evangéliste Torricelli. Monatshefte für Mathematik und Physik 48. Reprinted in L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 111–146. Nice: Les Belles Lettres.Google Scholar
  8. De Gandt, François. 1987. Les indivisibles de Torricelli. In L’Œuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.Google Scholar
  9. De Gandt, François. 1991a. Sur la détermination du mouvement selon Aristote et les conditions d’une mathématisation. In La physique d’Aristote et les conditions d’une science de la nature, ed. François De Gandt, and Pierre Souffrin, 85–105. Paris: VRIN.Google Scholar
  10. De Gandt, François. 1991b. Cavalieri’s indivisibles and Euclid’s Canons. In Revolution and continuity, essays in the history and philosophy of early modern science, ed. R. Ariew, and P. Barker, 157–182. Washington: Catholic University of America.Google Scholar
  11. De Gandt, François. 1992. L’évolution de la théorie des indivisibles et l’apport de Torricelli. In Geometria e atomismo nella scuola galileiana, ed. Massimo Bucciantini e Maurizio Torrini, 103–118. Firenze: L.S. Olschki.Google Scholar
  12. De Gandt, François. 1995. Force and geometry in Newton’s principia. Princeton: Princeton University Press.zbMATHGoogle Scholar
  13. Drabkin, Israel E. 1950. Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198.CrossRefGoogle Scholar
  14. Drake, Stillman. 1974a. Galileo Galilei: Two New Sciences. Madison: The University of Wisconsin Press.Google Scholar
  15. Drake, Stillman. 1974b. Mathematics and discovery in Galileo’s physics. Historia Mathematica 1: 129–150.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Drake, Stillman. 1979. Galileo’s notes on motion. Supplement of Annali dell’Istituto e Museo di Storia della Scienza 3. Firenze: Istituto e Museo di Storia della Scienza.Google Scholar
  17. Festa, Egidio. 1992. La notion d’ ‘agrégat d’indivisibles’ dans la constitution de la cinématique galiléenne: Cavalieri, Galilée, Torricelli. Etudes sur Galilée 45(2–3): 307–336.zbMATHMathSciNetGoogle Scholar
  18. Galilei, Galileo. 1890–1909. Le opere di Galileo Galilei. In Edizione Nazionale, 20 vols, ed. Antonio Favaro. Florence: Barbèra.Google Scholar
  19. Galluzzi, Paolo. 1979. Momento. Roma: Edizioni dell’Ateneo & Bizzarri.Google Scholar
  20. Galluzzi, Paolo. 2001. Tra atomi e indivisibili. La materia ambigua di Galileo. Lessico Intellettuale Europeo. Firenze: Leo S. Olschki Editore.Google Scholar
  21. Giusti, Enrico. 1980. Bonaventura Cavalieri and the theory of indivisibles. Rome: Cremonese.zbMATHGoogle Scholar
  22. Giusti, Enrico. 1986. Ricerche galileiane: il trattato ‘De motu aequabili’ come modello della teoria delle proporzioni. Bollettino di Storia delle Scienze Matematiche 6: 89–108.zbMATHMathSciNetGoogle Scholar
  23. Giusti, Enrico. 1989. Evangelista Torricelli continuatore di Galileo. Torricelliana 40: 13–25.Google Scholar
  24. Giusti, Enrico. 1993. Euclides reformatus: la teoria delle proporzioni nella scuola galileiana. Torino: Bollati-Boringhieri.Google Scholar
  25. Hill, David K. 1986. Galileo’s work on 116v: A new analysis. Isis 77: 283–291.CrossRefzbMATHMathSciNetGoogle Scholar
  26. Jacoli, Ferdinando. 1875. Evangelista Torricelli ed il metodo delle tangenti detto metodo di Roberval. Bollettino di bibliografia e di storia delle scienze matematiche e fisiche 8: 265–304.Google Scholar
  27. Koyré, Alexandre. 1939. Études galiléennes. Paris: Hermann.Google Scholar
  28. Loria, Gino. 1897. Evangelista Torricelli e la prima rettificazione di una curva. Atti della Reale Accademia dei Lincei V/6: 318–323.Google Scholar
  29. Murdoch, J.E. 2001. The medieval and renaissance tradition of ‘Minima naturalia’. Late Medieval and Early Modern Corpuscolar Matter Theories 91–131.Google Scholar
  30. Naylor, Ronald H. 1990. Galileo’s method of analysis and synthesis. Isis 81: 675–707.CrossRefMathSciNetGoogle Scholar
  31. Paolo, Palmieri. 2001. The obscurity of the equimultiples. Archive for History of Exact Sciences 55: 555–597.CrossRefzbMATHMathSciNetGoogle Scholar
  32. Paolo, Palmieri. 2006. A new look at Galileo’s search for mathematical proofs. Archive for History of Exact Sciences 60: 285–317.CrossRefMathSciNetGoogle Scholar
  33. Redondi, Pietro. 1985. Atomi, indivisibili e dogma. Quaderni Storici XX/59: 529–573.Google Scholar
  34. Roux, Sophie. 2010. Forms of mathematization (14th–17th centuries). Early Science and Medicine 15:4–5. doi: 10.1163/157338210X516242.
  35. Shea, William. 1983. Nature mathematized. Historical and philosophical case studies in classical modern natural philosophy. Dordrecht: Kluwer.Google Scholar
  36. Shea, William R. 2001. Galileo e l’atomismo. Acta Philosophica 10/2:257–272. Roma: Armando Editore.Google Scholar
  37. Torricelli, Evangelista. 1919–1944. Opere. Eds. Gino Loria and Giuseppe Vassura. Faenza: G. Montanari.Google Scholar
  38. Wisan, Winifred L. 1974. The New Science of motion: A study of Galileo’s ‘De motu locali. Archive for History of Exact Sciences 13: 103–306.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Montecchio P.no (VI)Italy

Personalised recommendations