Skip to main content

Chemical kinetics and diffusion approach: the history of the Klein–Kramers equation

Abstract

In this essay, the first statistical and stochastic treatments of chemical dynamics are analyzed and discussed, in particular the diffusive description of chemical reactions. The first part of the paper introduces the historical and methodological basis of the theories about stochastic processes and diffusion as well as their lesser-known applications in chemical kinetics, which were advanced by Jens Anton Christiansen (1888–1969). In the second, part we will focus our attention on the early works of Oskar Benjamin Klein (1894–1977) and Hendrik Anton Kramers (1894–1952) on electrolytes and the latter’s more mature work, which completes and gives a firm theoretical background to Christiansen’s description.

This is a preview of subscription content, access via your institution.

References

  • Arrhenius S.A. (1889) Über die Reaktionsgeschwindikeit bei der Inversion von Rohrzucker durch Saüren. Z. Phys. Chem. 4: 226

    Google Scholar 

  • Bak T.A. (1974) The History of Physical Chemistry in Denmark. Ann. Rev. Phys. Chem. 25: 1

    Article  Google Scholar 

  • Berglung, N., and Gents, B. 2008. The Eyring-Kramers law for potentials with non quadratic saddles. arXiv:0807.1681v1 [math.PR].

  • Brush, S.G. 1968. A History of Random Processes. Arch. Hist. Exact. Sci. 5:1; see also The Kind of Motion We Call Heat. (Amsterdam: North-Holland, 1976) Chap. 15.

  • Chandrashekhar S. (1943) Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 15: 1

    Article  Google Scholar 

  • Christiansen J.A. (1922) Über das Geschwindigkeitsgesetz monomolekularer Reactionen. Z. Phys. Chem. 103: 91

    Google Scholar 

  • Christiansen J.A. (1935) Einige Bemerkungen zur Anwendung der Bodensteinschen Methode der stationären Konzentrationen der Zwischenstoffe in der Reakionskinetik. Z. Phys. Chem. 28: 303

    Google Scholar 

  • Christiansen J.A. (1936) Über eine Erweiterung der Arrheniusschen Auffassung der chemischen Reaction. Z. Phys. Chem. 33: 145

    Google Scholar 

  • Christiansen J.A., Kramers H.A. (1923) Über die Geschwindigkeit chemischer Reaktionen. Z. Phys. Chem. 104: 451

    Google Scholar 

  • Debye P. (1912) Einige Resultate einer kinetischen Theorie der Isolatoren. Phys. Z. 13: 97

    Google Scholar 

  • Debye P., Hückel E. (1923) Zur Theorie der Elektrolyte. Physik. Z. 24: 185

    Google Scholar 

  • Delbrück M. (1940) Statistical Fluctuations in Autocatalytic Reactions. J. Chem. Phys. 8: 120

    Article  Google Scholar 

  • Dresden M. (1987) H.A. Kramers between tradition and revolution. Springer, New York

    Google Scholar 

  • Dresden M. (1988) Kramers’s Contributions to Statistical Mechanics. Phys. Today 41(9): 26

    Article  Google Scholar 

  • Dusham S. (1921) A Theory of chemical Reactivity. Calculations of rates of Reactions and equilibrium Constants. J. Am. Chem. Soc. 43: 397

    Google Scholar 

  • Einstein A. (1903) Eine Theorie der Grundlagen der Thermodynamik. Ann. d. Phys. 11: 76

    Google Scholar 

  • Einstein A. (1904) Zur allgemeinen molekularen Theorie der Wärme. Ann. d. Phys. 14: 98

    Google Scholar 

  • Einstein A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. d. Phys. 17: 549

    Article  Google Scholar 

  • Einstein A. (1917) Zur Quantentheorie der Strahlung. Phys. Z. 18: 121

    Google Scholar 

  • Einstein, A., to J. Perrin, 5 November 1919, In: D. Kormos Buchwald et al. (eds), The Collected Papers of Albert Einstein, Vol. 9: The Berlin Years. Correspondence, January 1919–April 1920, Princeton: Princeton University Press, 2004, Doc. 156; quoted by M.J. Nye in Molecular Reality: A Perspective on the Scientific Work of Jean Perrin. Science History Publications, New York: Neale Watson Academic Plublications, 1972, p. 177.

  • Evans M.C., Polanyi M. (1935) Some Applications of the Transition State Method to the Calculation of Reaction Velocities. Especially in Solution. Trans. Faraday Soc. 31: 875

    Article  Google Scholar 

  • Eyring H. (1935) The activated complex in chemical reactions. J. Chem. Phys. 3: 107

    Google Scholar 

  • Eyring H. (1975) Reaction in Condensed Phases. Academic Press, New York

    Google Scholar 

  • Eyring H., Eyring E.M. (1963) Modern Chemical Kinetics. Reinhold, New York

    Google Scholar 

  • Eyring H., Ree T. (1955) A Generalized Theory of Plasticity involving the Virial Theorem. Proc. Natl Acad. Sci. USA 41: 118

    MATH  Article  Google Scholar 

  • Eyring H., Lin S.H., Lin S.M. (1980) Basic Chemical Kinetics. Wiley, New York

    Google Scholar 

  • Guggenheim E.A., Weiss J. (1938) The Application of Equilibrium Theory to Reaction Kinetics. Trans. Faraday Soc. 34: 57

    Article  Google Scholar 

  • Hanggi P., Troe J. (1991) Rate Processes in Dissipative Systems: 50 Years after Kramers. Ber. Bunsenges. Phys. Chem. 95(3): 225

    Google Scholar 

  • Hevesy G.v. (1914) Ueber die Grösse und Beweglichkeit der Elektrizitätsträger in Flussigkeiten, Jahrbuch d. Rad. u. Elektronik 11: 419

    Google Scholar 

  • Hevesy G.v. (1916) Ueber die Grösse und Beweglichkeit der Elektrizitätsträger in Flussigkeiten, Jahrbuch d. Rad. u. Elektronik 13: 271

    Google Scholar 

  • King M.C., Laidler K.J. (1984) Chemical Kinetics and the Radiation Hypothesis. Arch. Hist. Exact. Sci. 30: 45

    Article  MathSciNet  Google Scholar 

  • Kirchhoff, G. 1897. Vorlesungen über Mechanik, 26, Vorlesung §4. Leipzig: Teubner.

  • Klein O. (1922) Zur statistischen Theorie der Suspensionen und Lösungen. Arkiv Mat. Astr. Fys. 16(5): 1

    Google Scholar 

  • Kramers, H.A. 1927. Investigations on the Free Energy of a Mixture of Ions. In: Amsterdam Proceedings, vol. 30, p. 145.

  • Kramers H.A. (1940) Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions. Physica 7: 284

    MATH  Article  MathSciNet  Google Scholar 

  • Laidler K.J. (1997) Chemical Kinetics. Prentice Hall, Ottawa

    Google Scholar 

  • Laidler K.J., King M.C. (1983) The development of Transition-State Theory. J. Phys. Chem. 87: 2657

    Article  Google Scholar 

  • Lorentz H.A. (1916) Les Théories statistiques en thermodynamique. Leipzig, Teubner

    Google Scholar 

  • Markov A.A. (1906) Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete. Tom 2: 15–135

    Google Scholar 

  • McQuarrie D.A. (1967) Stochastic Approach to Chemical Kinetics. Methuen, London

    Google Scholar 

  • Mehra, J., and Rechenberg, H. 1982. The Historical Development of Quantum Theory, vol. 1, part 2. New Zork: Springer, Chap. 4, p. 490.

  • Melnikov V.I., Meshkov S.V. (1986) Theory of activated rate processes: exact solution of the Kramers problem. J. Chem. Phys. 85: 1018

    Article  Google Scholar 

  • Milner S.R. (1912) The Virial of a Mixture of Ions. Philos. Mag. 23: 551

    Google Scholar 

  • Nernst W. (1893a) Über die Beteiligung eines Lösungmittels an chemischen Reaktionen. Z. Phys. Chem. 11: 345

    Google Scholar 

  • Nernst W. (1893b) Theoretische Chemie, Thermochimie IV, 4 Kapitel. Reaktiongeschwindigkeit und Temperatur, Stuttgart

    Google Scholar 

  • Perrin J.B. (1913) Les Atomes. Alcan, Paris

    MATH  Google Scholar 

  • Perrin J.B. (1919) Matière et lumière. Ann. de Phys. 11: 5

    Google Scholar 

  • Perrin J.B. (1922) Radiation and Chemistry. Trans. Faraday Soc. 17: 546

    Article  Google Scholar 

  • Polanyi M., Eyring H. (1931a) On Simple Gas Reaction. Z. Phys. Chem. 12: 279

    Google Scholar 

  • Polanyi M., Eyring H. (1931) Über einfache Gasreaktionen. Z. Phys. Chem. 12: 279

    Google Scholar 

  • Renn, J. 2005. Einstein’s Invention of Brownian Motion. Ann. Phys. (Leipzig) 14(Suppl):23; see also Nott, M. Molecular reality: the contributions of Brown Einstein and Perrin. School Sci. Rev. 86:39.

    Google Scholar 

  • Skinner J., Wolynes P.G. (1978) Relaxation Processes and Chemical Kinetics. J. Chem. Phys. 69: 2143

    Article  Google Scholar 

  • Smoluchowski M.v. (1906) Kinetische Theorie der Brownschen Bewegung und der Suspensionen. Ann. d. Phys. 21: 756–780

    Article  Google Scholar 

  • Smoluchowski M.v. (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeit. 17: 557

    Google Scholar 

  • Smoluchowski M.v. (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92: 129

    Google Scholar 

  • Smoluchowski, M.v. 1914. Gültigkeitsgrenzen des Zweiten Hauptsatzes der Wärmetheorie. Vorätrge über die Kinetische Theorie der Materie und der Elektrizität (Leipzig: Teubner, 1914)

  • Svedberg T. (1912) Die Existenz der Molecüle. Akademische Verlag, Leipzig

    Google Scholar 

  • ter Haar D. (1998) Master of Modern Physics: The Scientific Contributions of H. Princeton University Press, A. Kramers. Princeton

    Google Scholar 

  • Teske, A. 1977. Marian von Smoluchowski. Leben und Werk. Wroclaw: Zaklad Narodowy imienia Ossolinskich Wydawnictwo Polskiej Akademii Nauk.

  • Thomson J.J. (1893) On the effect of electrification and chemical action on a steam-jet, and of water-vapour on the discharge of electricity through gases. Philos. Mag. 36: 313

    Google Scholar 

  • Trautz M. (1920) Die quantentheoretische Bedeutung der Geschwindigkeitskonstanten. Zeitschr. F. Physik 2: 117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zambelli.

Additional information

Communicated by Tilman Sauer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zambelli, S. Chemical kinetics and diffusion approach: the history of the Klein–Kramers equation. Arch. Hist. Exact Sci. 64, 395–428 (2010). https://doi.org/10.1007/s00407-010-0059-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-010-0059-9

Keywords

  • Christiansen
  • Kramers
  • Diffusion
  • Reaction
  • Kramers-Klein
  • Stochastic