Chemical kinetics and diffusion approach: the history of the Klein–Kramers equation

Abstract

In this essay, the first statistical and stochastic treatments of chemical dynamics are analyzed and discussed, in particular the diffusive description of chemical reactions. The first part of the paper introduces the historical and methodological basis of the theories about stochastic processes and diffusion as well as their lesser-known applications in chemical kinetics, which were advanced by Jens Anton Christiansen (1888–1969). In the second, part we will focus our attention on the early works of Oskar Benjamin Klein (1894–1977) and Hendrik Anton Kramers (1894–1952) on electrolytes and the latter’s more mature work, which completes and gives a firm theoretical background to Christiansen’s description.

This is a preview of subscription content, log in to check access.

References

  1. Arrhenius S.A. (1889) Über die Reaktionsgeschwindikeit bei der Inversion von Rohrzucker durch Saüren. Z. Phys. Chem. 4: 226

    Google Scholar 

  2. Bak T.A. (1974) The History of Physical Chemistry in Denmark. Ann. Rev. Phys. Chem. 25: 1

    Article  Google Scholar 

  3. Berglung, N., and Gents, B. 2008. The Eyring-Kramers law for potentials with non quadratic saddles. arXiv:0807.1681v1 [math.PR].

  4. Brush, S.G. 1968. A History of Random Processes. Arch. Hist. Exact. Sci. 5:1; see also The Kind of Motion We Call Heat. (Amsterdam: North-Holland, 1976) Chap. 15.

  5. Chandrashekhar S. (1943) Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 15: 1

    Article  Google Scholar 

  6. Christiansen J.A. (1922) Über das Geschwindigkeitsgesetz monomolekularer Reactionen. Z. Phys. Chem. 103: 91

    Google Scholar 

  7. Christiansen J.A. (1935) Einige Bemerkungen zur Anwendung der Bodensteinschen Methode der stationären Konzentrationen der Zwischenstoffe in der Reakionskinetik. Z. Phys. Chem. 28: 303

    Google Scholar 

  8. Christiansen J.A. (1936) Über eine Erweiterung der Arrheniusschen Auffassung der chemischen Reaction. Z. Phys. Chem. 33: 145

    Google Scholar 

  9. Christiansen J.A., Kramers H.A. (1923) Über die Geschwindigkeit chemischer Reaktionen. Z. Phys. Chem. 104: 451

    Google Scholar 

  10. Debye P. (1912) Einige Resultate einer kinetischen Theorie der Isolatoren. Phys. Z. 13: 97

    Google Scholar 

  11. Debye P., Hückel E. (1923) Zur Theorie der Elektrolyte. Physik. Z. 24: 185

    Google Scholar 

  12. Delbrück M. (1940) Statistical Fluctuations in Autocatalytic Reactions. J. Chem. Phys. 8: 120

    Article  Google Scholar 

  13. Dresden M. (1987) H.A. Kramers between tradition and revolution. Springer, New York

    Google Scholar 

  14. Dresden M. (1988) Kramers’s Contributions to Statistical Mechanics. Phys. Today 41(9): 26

    Article  Google Scholar 

  15. Dusham S. (1921) A Theory of chemical Reactivity. Calculations of rates of Reactions and equilibrium Constants. J. Am. Chem. Soc. 43: 397

    Google Scholar 

  16. Einstein A. (1903) Eine Theorie der Grundlagen der Thermodynamik. Ann. d. Phys. 11: 76

    Google Scholar 

  17. Einstein A. (1904) Zur allgemeinen molekularen Theorie der Wärme. Ann. d. Phys. 14: 98

    Google Scholar 

  18. Einstein A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. d. Phys. 17: 549

    Article  Google Scholar 

  19. Einstein A. (1917) Zur Quantentheorie der Strahlung. Phys. Z. 18: 121

    Google Scholar 

  20. Einstein, A., to J. Perrin, 5 November 1919, In: D. Kormos Buchwald et al. (eds), The Collected Papers of Albert Einstein, Vol. 9: The Berlin Years. Correspondence, January 1919–April 1920, Princeton: Princeton University Press, 2004, Doc. 156; quoted by M.J. Nye in Molecular Reality: A Perspective on the Scientific Work of Jean Perrin. Science History Publications, New York: Neale Watson Academic Plublications, 1972, p. 177.

  21. Evans M.C., Polanyi M. (1935) Some Applications of the Transition State Method to the Calculation of Reaction Velocities. Especially in Solution. Trans. Faraday Soc. 31: 875

    Article  Google Scholar 

  22. Eyring H. (1935) The activated complex in chemical reactions. J. Chem. Phys. 3: 107

    Google Scholar 

  23. Eyring H. (1975) Reaction in Condensed Phases. Academic Press, New York

    Google Scholar 

  24. Eyring H., Eyring E.M. (1963) Modern Chemical Kinetics. Reinhold, New York

    Google Scholar 

  25. Eyring H., Ree T. (1955) A Generalized Theory of Plasticity involving the Virial Theorem. Proc. Natl Acad. Sci. USA 41: 118

    MATH  Article  Google Scholar 

  26. Eyring H., Lin S.H., Lin S.M. (1980) Basic Chemical Kinetics. Wiley, New York

    Google Scholar 

  27. Guggenheim E.A., Weiss J. (1938) The Application of Equilibrium Theory to Reaction Kinetics. Trans. Faraday Soc. 34: 57

    Article  Google Scholar 

  28. Hanggi P., Troe J. (1991) Rate Processes in Dissipative Systems: 50 Years after Kramers. Ber. Bunsenges. Phys. Chem. 95(3): 225

    Google Scholar 

  29. Hevesy G.v. (1914) Ueber die Grösse und Beweglichkeit der Elektrizitätsträger in Flussigkeiten, Jahrbuch d. Rad. u. Elektronik 11: 419

    Google Scholar 

  30. Hevesy G.v. (1916) Ueber die Grösse und Beweglichkeit der Elektrizitätsträger in Flussigkeiten, Jahrbuch d. Rad. u. Elektronik 13: 271

    Google Scholar 

  31. King M.C., Laidler K.J. (1984) Chemical Kinetics and the Radiation Hypothesis. Arch. Hist. Exact. Sci. 30: 45

    Article  MathSciNet  Google Scholar 

  32. Kirchhoff, G. 1897. Vorlesungen über Mechanik, 26, Vorlesung §4. Leipzig: Teubner.

  33. Klein O. (1922) Zur statistischen Theorie der Suspensionen und Lösungen. Arkiv Mat. Astr. Fys. 16(5): 1

    Google Scholar 

  34. Kramers, H.A. 1927. Investigations on the Free Energy of a Mixture of Ions. In: Amsterdam Proceedings, vol. 30, p. 145.

  35. Kramers H.A. (1940) Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions. Physica 7: 284

    MATH  Article  MathSciNet  Google Scholar 

  36. Laidler K.J. (1997) Chemical Kinetics. Prentice Hall, Ottawa

    Google Scholar 

  37. Laidler K.J., King M.C. (1983) The development of Transition-State Theory. J. Phys. Chem. 87: 2657

    Article  Google Scholar 

  38. Lorentz H.A. (1916) Les Théories statistiques en thermodynamique. Leipzig, Teubner

    Google Scholar 

  39. Markov A.A. (1906) Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete. Tom 2: 15–135

    Google Scholar 

  40. McQuarrie D.A. (1967) Stochastic Approach to Chemical Kinetics. Methuen, London

    Google Scholar 

  41. Mehra, J., and Rechenberg, H. 1982. The Historical Development of Quantum Theory, vol. 1, part 2. New Zork: Springer, Chap. 4, p. 490.

  42. Melnikov V.I., Meshkov S.V. (1986) Theory of activated rate processes: exact solution of the Kramers problem. J. Chem. Phys. 85: 1018

    Article  Google Scholar 

  43. Milner S.R. (1912) The Virial of a Mixture of Ions. Philos. Mag. 23: 551

    Google Scholar 

  44. Nernst W. (1893a) Über die Beteiligung eines Lösungmittels an chemischen Reaktionen. Z. Phys. Chem. 11: 345

    Google Scholar 

  45. Nernst W. (1893b) Theoretische Chemie, Thermochimie IV, 4 Kapitel. Reaktiongeschwindigkeit und Temperatur, Stuttgart

    Google Scholar 

  46. Perrin J.B. (1913) Les Atomes. Alcan, Paris

    Google Scholar 

  47. Perrin J.B. (1919) Matière et lumière. Ann. de Phys. 11: 5

    Google Scholar 

  48. Perrin J.B. (1922) Radiation and Chemistry. Trans. Faraday Soc. 17: 546

    Article  Google Scholar 

  49. Polanyi M., Eyring H. (1931a) On Simple Gas Reaction. Z. Phys. Chem. 12: 279

    Google Scholar 

  50. Polanyi M., Eyring H. (1931) Über einfache Gasreaktionen. Z. Phys. Chem. 12: 279

    Google Scholar 

  51. Renn, J. 2005. Einstein’s Invention of Brownian Motion. Ann. Phys. (Leipzig) 14(Suppl):23; see also Nott, M. Molecular reality: the contributions of Brown Einstein and Perrin. School Sci. Rev. 86:39.

    Google Scholar 

  52. Skinner J., Wolynes P.G. (1978) Relaxation Processes and Chemical Kinetics. J. Chem. Phys. 69: 2143

    Article  Google Scholar 

  53. Smoluchowski M.v. (1906) Kinetische Theorie der Brownschen Bewegung und der Suspensionen. Ann. d. Phys. 21: 756–780

    Article  Google Scholar 

  54. Smoluchowski M.v. (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeit. 17: 557

    Google Scholar 

  55. Smoluchowski M.v. (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92: 129

    Google Scholar 

  56. Smoluchowski, M.v. 1914. Gültigkeitsgrenzen des Zweiten Hauptsatzes der Wärmetheorie. Vorätrge über die Kinetische Theorie der Materie und der Elektrizität (Leipzig: Teubner, 1914)

  57. Svedberg T. (1912) Die Existenz der Molecüle. Akademische Verlag, Leipzig

    Google Scholar 

  58. ter Haar D. (1998) Master of Modern Physics: The Scientific Contributions of H. Princeton University Press, A. Kramers. Princeton

    Google Scholar 

  59. Teske, A. 1977. Marian von Smoluchowski. Leben und Werk. Wroclaw: Zaklad Narodowy imienia Ossolinskich Wydawnictwo Polskiej Akademii Nauk.

  60. Thomson J.J. (1893) On the effect of electrification and chemical action on a steam-jet, and of water-vapour on the discharge of electricity through gases. Philos. Mag. 36: 313

    Google Scholar 

  61. Trautz M. (1920) Die quantentheoretische Bedeutung der Geschwindigkeitskonstanten. Zeitschr. F. Physik 2: 117

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Zambelli.

Additional information

Communicated by Tilman Sauer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zambelli, S. Chemical kinetics and diffusion approach: the history of the Klein–Kramers equation. Arch. Hist. Exact Sci. 64, 395–428 (2010). https://doi.org/10.1007/s00407-010-0059-9

Download citation

Keywords

  • Christiansen
  • Kramers
  • Diffusion
  • Reaction
  • Kramers-Klein
  • Stochastic