Skip to main content

Advertisement

Log in

Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Meta-analyses suggest a sustained alleviation of depressive symptoms through glabellar botulinum toxin (BTX) injections. This can be explained by the disruption of facial feedback loops, which may moderate and reinforce the experience of negative emotions. Borderline personality disorder (BPD) is characterized by excessive negative emotions. Here, a seed-based resting-state functional connectivity (rsFC) analysis following BTX (N = 24) or acupuncture (ACU, N = 21) treatment in BPD is presented on areas related to the motor system and emotion processing. RsFC in BPD using a seed-based approach was analyzed. MRI data were measured before and 4 weeks after treatment. Based on previous research, the rsFC focus was on limbic and motor areas as well as the salience and default mode network. Clinically, after 4 weeks both groups showed a reduction of borderline symptoms. However, the anterior cingulate cortex (ACC) and the face area in the primary motor cortex (M1) displayed aberrant rsFC after BTX compared to ACU treatment. The M1 showed higher rsFC to the ACC after BTX treatment compared to ACU treatment. In addition, the ACC displayed an increased connectivity to the M1 as well as a decrease to the right cerebellum. This study shows first evidence for BTX-specific effects in the motor face region and the ACC. The observed effects of BTX on rsFC to areas are related to motor behavior. Since symptom improvement did not differ between the two groups, a BTX-specific effect seems plausible rather than a general therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data is available on request.

References

  1. Sundaram H, Signorini M, Liew S et al (2016) Global aesthetics consensus: Botulinum toxin type A—evidence-based review, emerging concepts, and consensus recommendations for aesthetic use, including updates on complications. Plast Reconstruct Surg 137:518e–529e. https://doi.org/10.1097/01.prs.0000475758.63709.23

    Article  CAS  Google Scholar 

  2. Guo Y, Lu Y, Liu T et al (2015) Efficacy and safety of botulinum toxin type A in the treatment of glabellar lines: a meta-analysis of randomized, placebo-controlled, double-blind trials. Plastic Reconstruct Surg 136:310e–318e. https://doi.org/10.1097/PRS.0000000000001544

    Article  CAS  Google Scholar 

  3. Tremaine AM, McCullough JL (2010) Botulinum toxin type A for the management of glabellar rhytids. Clin Cosmet Investig Dermatol 3:15–23. https://doi.org/10.2147/ccid.s6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rijntjes M, Tegenthoff M, Liepert J et al (1997) Cortical reorganization in patients with facial palsy. Ann Neurol 41:621–630. https://doi.org/10.1002/ana.410410511

    Article  CAS  PubMed  Google Scholar 

  5. Yildiz S, Bademkiran F, Yildiz N et al (2007) Facial motor cortex plasticity in patients with unilateral peripheral facial paralysis. NRE 22:133–140. https://doi.org/10.3233/NRE-2007-22209

    Article  CAS  Google Scholar 

  6. Weise D, Weise CM, Naumann M (2019) Central effects of botulinum neurotoxin-evidence from human studies. Toxins (Basel). https://doi.org/10.3390/toxins11010021

    Article  PubMed  Google Scholar 

  7. Sommer B, Zschocke I, Bergfeld D et al (2003) Satisfaction of patients after treatment with botulinum toxin for dynamic facial lines. Dermatol Surg 29:456–460. https://doi.org/10.1046/j.1524-4725.2003.29113.x

    Article  PubMed  Google Scholar 

  8. Baumeister J-C, Papa G, Foroni F (2016) Deeper than skin deep – The effect of botulinum toxin-A on emotion processing. Toxicon 118:86–90. https://doi.org/10.1016/j.toxicon.2016.04.044

    Article  CAS  PubMed  Google Scholar 

  9. Lewis MB (2018) The interactions between botulinum-toxin-based facial treatments and embodied emotions. Sci Rep. https://doi.org/10.1038/s41598-018-33119-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davis JI, Senghas A, Brandt F, Ochsner KN (2010) The effects of BOTOX injections on emotional experience. Emotion 10:433–440. https://doi.org/10.1037/a0018690

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hennenlotter A, Dresel C, Castrop F et al (2009) The link between facial feedback and neural activity within central circuitries of emotion—new insights from botulinum toxin–induced denervation of frown muscles. Cereb Cortex 19:537–542. https://doi.org/10.1093/cercor/bhn104

    Article  PubMed  Google Scholar 

  12. Kim M, Neta M, Davis F et al (2014) Botulinum toxin-induced facial muscle paralysis affects amygdala responses to the perception of emotional expressions: preliminary findings from an A-B-A design. Biol Mood Anxiety Disord 4:11. https://doi.org/10.1186/2045-5380-4-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strack F, Martin LL, Stepper S (1988) Inhibiting and facilitating conditions of the human smile: a nonobtrusive test of the facial feedback hypothesis. J Person Soc Psychol 54:768–777. https://doi.org/10.1037/0022-3514.54.5.768

    Article  CAS  Google Scholar 

  14. Adelmann PK, Zajonc RB (1989) Facial efference and the experience of emotion. Annu Rev Psychol 40:249–280. https://doi.org/10.1146/annurev.ps.40.020189.001341

    Article  CAS  PubMed  Google Scholar 

  15. Al Abdulmohsen T, Kruger THC (2011) The contribution of muscular and auditory pathologies to the symptomatology of autism. Med Hypoth 77:1038–1047. https://doi.org/10.1016/j.mehy.2011.08.044

    Article  Google Scholar 

  16. Hwang K, Kim YJ, Chung IH (2004) Innervation of the corrugator supercilii muscle. Ann Plast Surg 52:140–143. https://doi.org/10.1097/01.sap.0000095440.20407.0b

    Article  PubMed  Google Scholar 

  17. Brown TM, Drake TM, Krishnamurthy K (2022) Anatomy, head and neck, procerus muscle. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  18. Brin MF, Durgam S, Lum A et al (2020) OnabotulinumtoxinA for the treatment of major depressive disorder: a phase 2 randomized, double-blind, placebo-controlled trial in adult females. Int Clin Psychopharmacol 35:19–28. https://doi.org/10.1097/YIC.0000000000000290

    Article  PubMed  Google Scholar 

  19. Finzi E, Rosenthal NE (2014) Treatment of depression with onabotulinumtoxin A: a randomized, double-blind, placebo controlled trial. J Psychiat Res 52:1–6. https://doi.org/10.1016/j.jpsychires.2013.11.006

    Article  PubMed  Google Scholar 

  20. Magid M, Reichenberg JS, Poth PE et al (2014) Treatment of major depressive disorder using botulinum toxin a: a 24-week randomized, double-blind, placebo-controlled study. J Clin Psychiatry 75:837–844. https://doi.org/10.4088/JCP.13m08845

    Article  CAS  PubMed  Google Scholar 

  21. Wollmer MA, de Boer C, Kalak N et al (2012) Facing depression with botulinum toxin: a randomized controlled trial. J Psychiat Res 46:574–581. https://doi.org/10.1016/j.jpsychires.2012.01.027

    Article  PubMed  Google Scholar 

  22. Zamanian A, Ghanbari Jolfaei A, Mehran G, Azizian Z (2017) Efficacy of botox versus placebo for treatment of patients with major depression. Iran J Public Health 46:982–984

    PubMed  PubMed Central  Google Scholar 

  23. Matzke B, Herpertz SC, Berger C et al (2014) Facial reactions during emotion recognition in borderline personality disorder: a facial electromyography study. Psychopathology 47:101–110. https://doi.org/10.1159/000351122

    Article  PubMed  Google Scholar 

  24. Kruger THC, Magid M, Wollmer MA (2016) Can botulinum toxin help patients with borderline personality disorder? Am J Psychiat 173:940–941. https://doi.org/10.1176/appi.ajp.2016.16020174

    Article  PubMed  Google Scholar 

  25. Lenzenweger MF (2010) Current status of the scientific study of the personality disorders: an overview of epidemiological, longitudinal, experimental psychopathology, and neurobehavioral perspectives. J Am Psychoan Assoc 58:741–778. https://doi.org/10.1177/0003065110386111

    Article  Google Scholar 

  26. Ten Have M, Verheul R, Kaasenbrood A et al (2016) Prevalence rates of borderline personality disorder symptoms: a study based on the Netherlands Mental Health Survey and Incidence Study-2. BMC Psychiatry 16:249. https://doi.org/10.1186/s12888-016-0939-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th ed.

  28. Bohus M (2018) Borderline-Störung. In: Margraf J, Schneider S (eds) Lehrbuch der Verhaltenstherapie, vol 2. Springer, Berlin, Heidelberg, pp 471–505

    Chapter  Google Scholar 

  29. Domes G, Czieschnek D, Weidler F et al (2008) Recognition of facial affect in borderline personality disorder. J Person Disord 22:135–147. https://doi.org/10.1521/pedi.2008.22.2.135

    Article  Google Scholar 

  30. Lynch TR, Rosenthal MZ, Kosson DS et al (2006) Heightened sensitivity to facial expressions of emotion in borderline personality disorder. Emotion 6:647–655. https://doi.org/10.1037/1528-3542.6.4.647

    Article  PubMed  Google Scholar 

  31. Sinke C, Wollmer MA, Kneer J et al (2017) Interaction between behavioral inhibition and emotional processing in borderline personality disorder using a pictorial emotional go/no-go paradigm. Psychiatry Res 256:286–289. https://doi.org/10.1016/j.psychres.2017.06.046

    Article  PubMed  Google Scholar 

  32. van Zutphen L, Siep N, Jacob GA et al (2015) Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: a critical review of fMRI studies. Neurosci Biobehav Rev 51:64–76. https://doi.org/10.1016/j.neubiorev.2015.01.001

    Article  PubMed  Google Scholar 

  33. Frankenburg FR, Zanarini MC (2004) The association between borderline personality disorder and chronic medical illnesses, poor health-related lifestyle choices, and costly forms of health care utilization. J Clin Psychiat 65:1660–1665. https://doi.org/10.4088/JCP.v65n1211

    Article  Google Scholar 

  34. Soeteman DI, Verheul R, Busschbach JJV (2008) The burden of disease in personality disorders: diagnosis-specific quality of life. J Person Disord 22:259–268. https://doi.org/10.1521/pedi.2008.22.3.259

    Article  Google Scholar 

  35. Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 34:1866–1872. https://doi.org/10.3174/ajnr.A3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warren SM, Chou Y, Steklis HD (2020) Potential for resting-state fMRI of the amygdala in elucidating neural mechanisms of adaptive self-regulatory strategies: a systematic review. Brain Connect 10:3–17. https://doi.org/10.1089/brain.2019.0700

    Article  PubMed  Google Scholar 

  37. Lissek S, Wilimzig C, Stude P et al (2009) Immobilization impairs tactile perception and shrinks somatosensory cortical maps. Curr Biol 19:837–842. https://doi.org/10.1016/j.cub.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  38. Franchi G (2002) Time course of motor cortex reorganization following botulinum toxin injection into the vibrissal pad of the adult rat: cortical reorganization after BTX injection in the rat vibrissal pad. Eur J Neurosci 16:1333–1348. https://doi.org/10.1046/j.1460-9568.2002.02195.x

    Article  CAS  PubMed  Google Scholar 

  39. Delnooz CCS, Pasman JW, Beckmann CF, van de Warrenburg BPC (2013) Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS ONE 8:e62877. https://doi.org/10.1371/journal.pone.0062877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barnow S, Völker KA, Möller B et al (2009) Neurophysiological correlates of borderline personality disorder: a transcranial magnetic stimulation study. Biol Psychiatry 65:313–318. https://doi.org/10.1016/j.biopsych.2008.08.016

    Article  PubMed  Google Scholar 

  41. Krause-Utz A, Veer IM, Sarb R et al (2014) Amygdala and anterior cingulate resting-state functional connectivity in borderline personality disorder patients with a history of interpersonal trauma. Psychol Med 13:1–13. https://doi.org/10.1017/S0033291714000324

    Article  Google Scholar 

  42. Das P, Calhoun V, Malhi GS (2014) Bipolar and borderline patients display differential patterns of functional connectivity among resting state networks. Neuroimage 98:73–81. https://doi.org/10.1016/j.neuroimage.2014.04.062

    Article  PubMed  Google Scholar 

  43. Doll A, Sorg C, Manoliu A et al (2013) Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder. Front Hum Neurosci 7:727. https://doi.org/10.3389/fnhum.2013.00727

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kluetsch RC, Schmahl C, Niedtfeld I et al (2012) Alterations in default mode network connectivity during pain processing in borderline personality disorder. Arch Gen Psychiatry 69:993–1002. https://doi.org/10.1001/archgenpsychiatry.2012.476

    Article  PubMed  PubMed Central  Google Scholar 

  45. Visintin E, De Panfilis C, Amore M et al (2016) Mapping the brain correlates of borderline personality disorder: a functional neuroimaging meta-analysis of resting state studies. J Affect Disord 204:262–269. https://doi.org/10.1016/j.jad.2016.07.025

    Article  PubMed  Google Scholar 

  46. Wolf RC, Sambataro F, Vasic N et al (2011) Aberrant connectivity of resting-state networks in borderline personality disorder. J Psychiatry Neurosci 36:402–411. https://doi.org/10.1503/jpn.100150

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wollmer MA, Neumann I, Jung S et al (2022) Clinical effects of glabellar botulinum toxin injections on borderline personality disorder: a randomized controlled trial. J Psychopharmacol 36:159–169. https://doi.org/10.1177/02698811211069108

    Article  CAS  PubMed  Google Scholar 

  48. Armour M, Smith CA, Wang L-Q et al (2019) Acupuncture for depression: a systematic review and meta-analysis. J Clin Med 8:E1140. https://doi.org/10.3390/jcm8081140

    Article  Google Scholar 

  49. Hollifield M, Sinclair-Lian N, Warner TD, Hammerschlag R (2007) Acupuncture for posttraumatic stress disorder: a randomized controlled pilot trial. J Nerv Ment Dis 195:504–513. https://doi.org/10.1097/NMD.0b013e31803044f8

    Article  PubMed  Google Scholar 

  50. Pilkington K, Kirkwood G, Rampes H et al (2007) Acupuncture for anxiety and anxiety disorders—a systematic literature review. Acupunct Med 25:1–10. https://doi.org/10.1136/aim.25.1-2.1

    Article  PubMed  Google Scholar 

  51. Shen X, Xia J, Adams CE (2014) Acupuncture for schizophrenia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005475.pub2

  52. Smith CA, Armour M, Lee MS, et al (2018) Acupuncture for depression. Cochrane Database Syst Rev 3:CD004046. https://doi.org/10.1002/14651858.CD004046.pub4

  53. Dilling H, Mombour W, Schmidt MH, et al (2015) Internationale Klassifikation psychischer Störungen : ICD-10 Kapitel V (F) klinisch-diagnostische Leitlinien, 10. In: Auflage, unter Berücksichtigung der Änderungen entsprechend ICD-10-GM 2015. Hogrefe Verlag, Bern

  54. Fydrich T, Renneberg B, Schmitz B, Wittchen H-U (1997) SKID II. Strukturiertes Klinisches Interview für DSM-IV, Achse II: Persönlichkeitsstörungen. Hogrefe, Göttingen

  55. Zanarini MC (2003) Zanarini rating scale for borderline personality disorder (ZAN-BPD): a continuous measure of DSM-IV borderline psychopathology. J Person Disord 17:233–242. https://doi.org/10.1521/pedi.17.3.233.22147

    Article  Google Scholar 

  56. Wolf M, Limberger MF, Kleindienst N et al (2009) Kurzversion der Borderline-Symptom-Liste (BSL-23): entwicklung und Überprüfung der psychometrischen Eigenschaften. PPmP-Psychotherapie Psychosomatik Medizinische Psychologie 59:321–324. https://doi.org/10.1055/s-0028-1104598

    Article  Google Scholar 

  57. Song X-W, Dong Z-Y, Long X-Y et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6:e25031. https://doi.org/10.1371/journal.pone.0025031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan C-G, Wang X-D, Zuo X-N, Zang Y-F (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351. https://doi.org/10.1007/s12021-016-9299-4

    Article  PubMed  Google Scholar 

  59. Liepert J, Tegenthoff M, Malin J-P (1995) Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol Electromyogr Motor Control 97:382–386. https://doi.org/10.1016/0924-980X(95)00194-P

    Article  CAS  Google Scholar 

  60. Raffin E, Siebner HR (2019) Use-dependent plasticity in human primary motor hand area: synergistic interplay between training and immobilization. Cereb Cortex 29:356–371. https://doi.org/10.1093/cercor/bhy226

    Article  PubMed  Google Scholar 

  61. Krippl M, Karim AA, Brechmann A (2015) Neuronal correlates of voluntary facial movements. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2015.00598

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  63. Paxinos G, Xu-Feng H, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: The Human Nervous System. Elsevier, pp 260–327

  64. Singh K, Indovina I, Augustinack JC et al (2020) Probabilistic template of the lateral parabrachial nucleus, medial parabrachial nucleus, vestibular nuclei complex, and medullary viscero-sensory-motor nuclei complex in living humans from 7 Tesla MRI. Front Neurosci 13:1425. https://doi.org/10.3389/fnins.2019.01425

    Article  PubMed  PubMed Central  Google Scholar 

  65. Singh K, García-Gomar MG, Bianciardi M (2021) Probabilistic atlas of the mesencephalic reticular formation, isthmic reticular formation, microcellular tegmental nucleus, ventral tegmental area nucleus complex, and caudal–rostral linear raphe nucleus complex in living humans from 7 Tesla magnetic resonance imaging. Brain Connect 11:613–623. https://doi.org/10.1089/brain.2020.0975

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stinear CM, Coxon JP, Byblow WD (2009) Primary motor cortex and movement prevention: where stop meets go. Neurosci Biobehav Rev 33:662–673. https://doi.org/10.1016/j.neubiorev.2008.08.013

    Article  PubMed  Google Scholar 

  67. Stevens FL, Hurley RA, Taber KH et al (2011) Anterior cingulate cortex: unique role in cognition and emotion. JNP 23:121–125. https://doi.org/10.1176/jnp.23.2.jnp121

    Article  Google Scholar 

  68. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93. https://doi.org/10.1016/j.tics.2010.11.004

    Article  PubMed  Google Scholar 

  69. Saxe R (2006) Uniquely human social cognition. Curr Opin Neurobiol 16:235–239. https://doi.org/10.1016/j.conb.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  70. Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858. https://doi.org/10.1002/hbm.20547

    Article  PubMed  Google Scholar 

  71. Seidler RD, Kwak Y, Fling BW, Bernard JA (2013) Neurocognitive mechanisms of error-based motor learning. Adv Exp Med Biol. https://doi.org/10.1007/978-1-4614-5465-6_3

    Article  PubMed  PubMed Central  Google Scholar 

  72. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424. https://doi.org/10.1038/35077500

    Article  CAS  PubMed  Google Scholar 

  73. Chouinard PA, Paus T (2006) The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12:143–152. https://doi.org/10.1177/1073858405284255

    Article  PubMed  Google Scholar 

  74. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138. https://doi.org/10.1038/nrn2787

    Article  CAS  PubMed  Google Scholar 

  75. Alexander WH, Brown JW (2019) The role of the anterior cingulate cortex in prediction error and signaling surprise. Top Cogn Sci 11:119–135. https://doi.org/10.1111/tops.12307

    Article  PubMed  Google Scholar 

  76. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739. https://doi.org/10.1016/S0959-4388(00)00153-7

    Article  CAS  PubMed  Google Scholar 

  77. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313. https://doi.org/10.1038/nrn2332

    Article  CAS  PubMed  Google Scholar 

  78. Popa LS, Ebner TJ (2018) Cerebellum, predictions and errors. Front Cell Neurosci 12:524. https://doi.org/10.3389/fncel.2018.00524

    Article  PubMed  Google Scholar 

  79. Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347. https://doi.org/10.1016/s1364-6613(98)01221-2

    Article  CAS  PubMed  Google Scholar 

  80. Cullen KR, Vizueta N, Thomas KM et al (2011) Amygdala functional connectivity in young women with borderline personality disorder. Brain Connect 1:61–71. https://doi.org/10.1089/brain.2010.0001

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cai R, Shen G, Wang H, Guan Y (2018) Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI. J Integrat Med 16:26–33. https://doi.org/10.1016/j.joim.2017.12.002

    Article  Google Scholar 

  82. Shah R, Zanarini MC (2018) Comorbidity of borderline personality disorder: current status and future directions. Psychiatr Clin North Am 41:583–593. https://doi.org/10.1016/j.psc.2018.07.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Hannover Medical School represented by Hannover Clinical Trial Center GmbH (HCTC) acted as the study sponsor. Neither the funding sources nor the sponsor had any role in the study design, the collection, analysis, and interpretation of the data, in the writing of the publication, and in the decision to submit the paper for publication. We thank Silke Malecha who played a pivotal role in the study’s execution and sadly passed away.

Funding

This research was funded by grants of the German Research Foundation (KR 3706/3-1, TK & MAW) and the Asklepios Kliniken Hamburg GmbH Forschungsförderung (MAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tillmann H. C. Kruger.

Ethics declarations

Conflict of interest

Author Kruger has received honoraria for talks and/or advisory board activities from Allergan; Lilly, Lundbeck, Otsuka, Schwabe, Servier, and Trommsdorf. Authors Kruger and Wollmer were members of an advisory board of Allergan. All other authors have no conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, J., Sinke, C., Neumann, I. et al. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 274, 97–107 (2024). https://doi.org/10.1007/s00406-023-01563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01563-4

Keywords

Navigation