Skip to main content
Log in

Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; PFDR = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; PFDR = 0.130) and antisocial personality disorder (P = 0.026; PFDR = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demontis D, Walters RK, Martin J et al (2019) Discovery of the first genome-wide significant risk loci for attention-deficit/hyperactivity disorder. Nat Genet 51:63–75. https://doi.org/10.1038/s41588-018-0269-7

    Article  CAS  PubMed  Google Scholar 

  2. Vernes SC, Oliver PL, Spiteri E et al (2011) FOXP2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002145

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konopka G, Bomar JM, Winden K et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213–217. https://doi.org/10.1038/nature08549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. den Hoed J, Devaraju K, Fisher SE (2021) Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 22. https://doi.org/10.15252/EMBR.202152803

  5. Pievsky MA, McGrath RE (2018) The neurocognitive profile of attention-deficit/hyperactivity disorder: a review of meta-analyses. Arch Clin Neuropsychol 33:143–157. https://doi.org/10.1093/arclin/acx055

    Article  PubMed  Google Scholar 

  6. Co M, Anderson AG, Konopka G (2020) FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 9:1–25. https://doi.org/10.1002/wdev.375

    Article  CAS  Google Scholar 

  7. Campbell P, Reep RL, Stoll ML et al (2009) Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol 512:84–100. https://doi.org/10.1002/cne.21881

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lai CSL, Gerrelli D, Monaco AP et al (2003) FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126:2455–2462. https://doi.org/10.1093/brain/awg247

    Article  PubMed  Google Scholar 

  9. Penhune VB, Steele CJ (2012) Parallel contributions of cerebellar, striatal, and M1 mechanisms to motor sequence learning. Behav Brain Res 226:579–591. https://doi.org/10.1016/j.bbr.2011.09.044

    Article  PubMed  Google Scholar 

  10. French CA, Vinueza Veloz MF, Zhou K et al (2019) Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 24:447–462. https://doi.org/10.1038/s41380-018-0199-x

    Article  CAS  PubMed  Google Scholar 

  11. Gunaydin LA, Kreitzer AC (2016) Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 78:327–350. https://doi.org/10.1146/annurev-physiol-021115-105355

    Article  CAS  PubMed  Google Scholar 

  12. Wei W, Wang XJ (2016) Inhibitory control in the cortico-basal ganglia-thalamocortical loop: complex regulation and interplay with memory and decision processes. Neuron 92:1093–1105. https://doi.org/10.1016/j.neuron.2016.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Enard W, Gehre S, Hammerschmidt K et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971. https://doi.org/10.1016/j.cell.2009.03.041

    Article  CAS  PubMed  Google Scholar 

  14. Enard W (2011) FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 21:415–424. https://doi.org/10.1016/j.conb.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  15. Reimers-Kipping S, Hevers W, Pääbo S, Enard W (2011) Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175:75–84. https://doi.org/10.1016/j.neuroscience.2010.11.042

    Article  CAS  PubMed  Google Scholar 

  16. Chen YC, Kuo HY, Bornschein U et al (2016) Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci 19:1513–1522. https://doi.org/10.1038/nn.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vicente AM, Martins GJ, Costa RM (2020) Cortico-basal ganglia circuits underlying dysfunctional control of motor behaviors in neuropsychiatric disorders. Curr Opin Genet Dev 65:151–159. https://doi.org/10.1016/j.gde.2020.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubin JE, Vich C, Clapp M et al (2021) The credit assignment problem in cortico-basal ganglia-thalamic networks: a review, a problem, and a possible solution. Eur J Neurosci 53:2234–2253. https://doi.org/10.1111/ejn.14745

    Article  PubMed  Google Scholar 

  19. Hoogman M, Bralten J, Hibar DP et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4:310–319. https://doi.org/10.1016/S2215-0366(17)30049-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoogman M, Muetzel R, Guimaraes JP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542. https://doi.org/10.1176/appi.ajp.2019.18091033

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boedhoe PSW, van Rooij D, Hoogman M et al (2020) Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD working groups. Am J Psychiatry 177:834–843. https://doi.org/10.1176/appi.ajp.2020.19030331

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koomar T, Michaelson JJ (2020) Genetic intersections of language and neuropsychiatric conditions. Curr Psychiatry Rep 22:1–16. https://doi.org/10.1007/s11920-019-1123-z

    Article  Google Scholar 

  23. Medvedeva VP, Rieger MA, Vieth B et al (2019) Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet 28:701–717. https://doi.org/10.1093/hmg/ddy372

    Article  CAS  PubMed  Google Scholar 

  24. den Hoed J, Fisher SE (2020) Genetic pathways involved in human speech disorders. Curr Opin Genet Dev 65:103–111. https://doi.org/10.1016/j.gde.2020.05.012

    Article  CAS  Google Scholar 

  25. Satterstrom FK, Walters RK, Singh T et al (2019) Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat Neurosci 22:1961–1965. https://doi.org/10.1038/s41593-019-0527-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagel M, Watanabe K, Stringer S et al (2018) Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. https://doi.org/10.1038/s41467-018-03242-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jansen PR, Watanabe K, Stringer S et al (2019) Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51:394–403. https://doi.org/10.1038/s41588-018-0333-3

    Article  CAS  PubMed  Google Scholar 

  28. Dashti HS, Jones SE, Wood AR et al (2019) Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-08917-4

    Article  CAS  Google Scholar 

  29. Clifton EAD, Perry JRB, Imamura F et al (2018) Genome-wide association study for risk-taking propensity indicates shared pathways with body mass index. Commun Biol. https://doi.org/10.1038/s42003-018-0042-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Strawbridge RJ, Ward J, Lyall LM et al (2018) Genetics of self-reported risk-taking behavior, trans-ethnic consistency, and relevance to brain gene expression. Transl Psychiatry 8:1–11. https://doi.org/10.1038/s41398-018-0236-1

    Article  Google Scholar 

  31. Karlsson Linnér R, Biroli P, Kong E et al (2019) Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet 51:245–257. https://doi.org/10.1038/s41588-018-0309-3

    Article  CAS  PubMed  Google Scholar 

  32. Moeller FG, Barratt ES, Dougherty DM et al (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793. https://doi.org/10.1176/appi.ajp.158.11.1783

    Article  CAS  PubMed  Google Scholar 

  33. Staes N, Sherwood CC, Wright K et al (2017) FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-16844-x

    Article  CAS  Google Scholar 

  34. Tsui D, Vessey JP, Tomita H et al (2013) FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci 33:244–258. https://doi.org/10.1523/JNEUROSCI.1665-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Rhijn JR, Fisher SE, Vernes SC, Nadif Kasri N (2018) Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 223:4211–4226. https://doi.org/10.1007/s00429-018-1746-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Co M, Hickey SL, Kulkarni A et al (2020) Cortical Foxp2 supports behavioral flexibility and developmental dopamine D1 receptor expression. Cereb Cortex 30:1855–1870. https://doi.org/10.1093/cercor/bhz209

    Article  PubMed  Google Scholar 

  37. Schreiweis C, Bornschein U, Burguière E et al (2014) Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci USA 111:14253–14258. https://doi.org/10.1073/pnas.1414542111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schreiweis C, Irinopoulou T, Vieth B et al (2019) Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 118:212–222. https://doi.org/10.1016/j.cortex.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  39. Kehdy FSG, Gouveia MH, Machado M et al (2015) Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci USA 112:8696–8701. https://doi.org/10.1073/pnas.1504447112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V et al (2014) Admixture in Latin America: geographic structure, phenotypic diversity, and self-perception of ancestry based on 7342 individuals. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004572

    Article  PubMed  PubMed Central  Google Scholar 

  41. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-dos-Santos ÂKC et al (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 31:184–190. https://doi.org/10.1002/humu.21159

    Article  CAS  PubMed  Google Scholar 

  42. Zembrzuski VM, Callegari-Jacques SM, Hutz MH (2006) Application of an African ancestry index as a genomic control approach in a Brazilian population. Ann Hum Genet 70:822–828. https://doi.org/10.1111/j.1469-1809.2006.00270.x

    Article  CAS  PubMed  Google Scholar 

  43. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn (DSM-IV). American Psychiatric Association, Washington

  44. American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn (DSM-5). American Psychiatric Association, Arlington

  45. Matte B, Rohde LA, Turner JB et al (2015) Reliability and validity of proposed DSM-5 ADHD symptoms in a clinical sample of adults. J Neuropsychiatry Clin Neurosci 27:228–236. https://doi.org/10.1176/appi.neuropsych.13060137

    Article  PubMed  Google Scholar 

  46. Mercadante MT, Asbahr F, Rosario MC, Ayres AM, Ferrari MC, Assumpção FB, MIguel E (1995) K-SADS, entrevista semi-estruturada para diagnóstico em psiquiatria da infância, versão epidemiológica.tle. PROTOC-Hosp das Clínicas da FMUSP 1 ed

  47. Amorim P (2000) Mini international neuropsychiatric interview (MINI): validação de entrevista breve para diagnóstico de transtornos mentais. Rev Bras Psiquiatr 22:106–115. https://doi.org/10.1590/s1516-44462000000300003

    Article  Google Scholar 

  48. Sheehan DV, Lecrubier Y, Sheehan KH et al (1998) The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33

    PubMed  Google Scholar 

  49. First MB, Spitzer RL, Gibbon M, Williams JBW (1998) Structured clinical interview for DSM-IV axis I disorders, research version, Patient edition (SCID-I/P). Biometrics Research, New York

    Google Scholar 

  50. First MB, Williams JBW, Karg RS, Spitzer RL (2015) Structured clinical interview for DSM-5—research version (SCID-5 for DSM-5, Research Version; SCID-5-RV)

  51. Swanson JM (1992) School-based assessments and interventions for ADD students. KC Publications, Cape Town

    Google Scholar 

  52. Cloninger C, Robert; Svrakic, Dragan M., Przibeck TR, (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–990

    Article  CAS  PubMed  Google Scholar 

  53. Kessler RC, Adler L, Ames M et al (2005) The World Health Organization Adult ADHD self-report scale (ASRS): a short screening scale for use in the general population. Psychol Med 35:245–256. https://doi.org/10.1017/S0033291704002892

    Article  PubMed  Google Scholar 

  54. Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet 7:29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623

    Article  CAS  Google Scholar 

  55. Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  PubMed  Google Scholar 

  56. Hibar DP, Stein JL, Renteria ME et al (2015) Common genetic variants influence human subcortical brain structures. Nature 520:224–229. https://doi.org/10.1038/nature14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyle AP, Hong EL, Hariharan M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797. https://doi.org/10.1101/gr.137323.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rentzsch P, Witten D, Cooper GM et al (2019) CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–D894. https://doi.org/10.1093/nar/gky1016

    Article  CAS  PubMed  Google Scholar 

  60. Ward LD, Kellis M (2016) HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 44:D877–D881. https://doi.org/10.1093/nar/gkv1340

    Article  CAS  PubMed  Google Scholar 

  61. McLaren W, Gil L, Hunt SE et al (2016) The ensemble variant effect predictor. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  Google Scholar 

  62. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu C, Zhang F, Li T et al (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genom. https://doi.org/10.1186/1471-2164-13-661

    Article  Google Scholar 

  64. Watanabe K, Stringer S, Frei O et al (2019) A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51:1339–1348. https://doi.org/10.1038/s41588-019-0481-0

    Article  CAS  PubMed  Google Scholar 

  65. Machiela MJ, Chanock SJ (2015) LDlink: a web-based application exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31:3555–3557. https://doi.org/10.1093/bioinformatics/btv402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pruim RJ, Welch RP, Sanna S et al (2011) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 27:2336–2337. https://doi.org/10.1093/bioinformatics/btq419

    Article  CAS  Google Scholar 

  67. Paulus MP, Rogalsky C, Simmons A et al (2003) Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 19:1439–1448. https://doi.org/10.1016/S1053-8119(03)00251-9

    Article  PubMed  Google Scholar 

  68. Pollak Y, Dekkers TJ, Shoham R, Huizenga HM (2019) Risk-taking behavior in attention-deficit/hyperactivity disorder (ADHD): a review of potential underlying mechanisms and of interventions. Curr Psychiatry Rep. https://doi.org/10.1007/s11920-019-1019-y

    Article  PubMed  Google Scholar 

  69. Du Rietz E, Coleman J, Glanville K et al (2018) Association of polygenic risk for attention-deficit/hyperactivity disorder with co-occurring traits and disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 3:635–643. https://doi.org/10.1016/j.bpsc.2017.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  70. Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69:1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Smith RJ, Laiks LS (2018) Behavioral and neural mechanisms underlying habitual and compulsive drug-seeking. Prog Neuro-Psychopharmacol Biol Psychiatry 87:11–21. https://doi.org/10.1016/j.pnpbp.2017.09.003

    Article  Google Scholar 

  72. Turner D, Sebastian A, Tüscher O (2017) Impulsivity and cluster B personality disorders. Curr Psychiatry Rep. https://doi.org/10.1007/s11920-017-0768-8

    Article  PubMed  Google Scholar 

  73. Jager A, Dam SA, Van Der Mierden S et al (2020) Modulation of cognitive flexibility by reward and punishment in BALB/cJ and BALB/cByJ mice. Behav Brain Res 378:112294. https://doi.org/10.1016/j.bbr.2019.112294

    Article  PubMed  Google Scholar 

  74. Guimaraes JPOFT, Bralten J, Greven CU et al (2020) Discovering the shared biology of cognitive traits determined by genetic overlap. Neuroimage 208:116409. https://doi.org/10.1016/j.neuroimage.2019.116409

    Article  CAS  PubMed  Google Scholar 

  75. Holroyd CB, Yeung N (2012) Motivation of extended behaviors by the anterior cingulate cortex. Trends Cogn Sci 16:122–128. https://doi.org/10.1016/j.tics.2011.12.008

    Article  PubMed  Google Scholar 

  76. Kawai T, Yamada H, Sato N et al (2015) Roles of the lateral habenula and anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman primates. Neuron 88:792–804. https://doi.org/10.1016/j.neuron.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  77. Bayard F, Nymberg Thunell C, Abé C et al (2020) Distinct brain structure and behavior related to ADHD and conduct disorder traits. Mol Psychiatry 25:3020–3033. https://doi.org/10.1038/s41380-018-0202-6

    Article  PubMed  Google Scholar 

  78. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93. https://doi.org/10.1016/j.tics.2010.11.004

    Article  PubMed  Google Scholar 

  79. Holroyd CB, Umemoto A (2016) The research domain criteria framework: the case for anterior cingulate cortex. Neurosci Biobehav Rev 71:418–443. https://doi.org/10.1016/j.neubiorev.2016.09.021

    Article  PubMed  Google Scholar 

  80. Steele VR, Aharoni E, Munro GE et al (2013) A large scale (N = 102) functional neuroimaging study of response inhibition in a Go/NoGo task. Behav Brain Res 256:529–536. https://doi.org/10.1016/j.bbr.2013.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  81. Braver TS, Barch DM, Gray JR et al (2001) Anterior cingulate cortex and response conflict: effects of frequency, inhibition, and errors. Cereb Cortex 11:825–836. https://doi.org/10.1093/cercor/11.9.825

    Article  CAS  PubMed  Google Scholar 

  82. Kerns JG, Cohen JD, MacDonald AW et al (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303(80):1023–1026. https://doi.org/10.1126/science.1089910

    Article  CAS  PubMed  Google Scholar 

  83. Gruber SA, Rogowska J, Holcomb P et al (2002) Stroop performance in normal control subjects: an fMRI study. Neuroimage 16:349–360. https://doi.org/10.1006/nimg.2002.1089

    Article  PubMed  Google Scholar 

  84. Garavan H, Hester R, Murphy K et al (2006) Individual differences in the functional neuroanatomy of inhibitory control. Brain Res 1105:130–142. https://doi.org/10.1016/j.brainres.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Hughes LE, Rowe JB (2012) Selection and inhibition mechanisms for human voluntary action decisions. Neuroimage 63:392–402. https://doi.org/10.1016/j.neuroimage.2012.06.058

    Article  PubMed  Google Scholar 

  86. Hart H, Radua J, Nakao T et al (2013) Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiat 70:185–198. https://doi.org/10.1001/jamapsychiatry.2013.277

    Article  Google Scholar 

  87. Chan AS, Han YMY, Leung WWM et al (2011) Abnormalities in the anterior cingulate cortex associated with attentional and inhibitory control deficits: a neurophysiological study on children with autism spectrum disorders. Res Autism Spectr Disord 5:254–266. https://doi.org/10.1016/j.rasd.2010.04.007

    Article  Google Scholar 

  88. Gavita OA, Capris D, Bolno J, David D (2012) Anterior cingulate cortex findings in child disruptive behavior disorders. A meta-analysis. Aggress Violent Behav 17:507–513. https://doi.org/10.1016/j.avb.2012.07.002

    Article  Google Scholar 

  89. Clovis YM, Enard W, Marinaro F et al (2012) Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139:3332–3342. https://doi.org/10.1242/dev.078063

    Article  CAS  PubMed  Google Scholar 

  90. Fu L, Shi Z, Luo G et al (2014) Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3′ untranslated region. Mol Brain 7:1–7. https://doi.org/10.1186/s13041-014-0071-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the staff of the participating institutions for all their support with data collection, including ProDAH-A team and all the subjects who kindly agreed to participate in the research.

Funding

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—476529/2012-3, 466722/2014-1, and 424041/2016-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance Code 001 and FIPE-HCPA 160600), and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (PqG-19/2551–0001731-6, PqG-19/2551–001668-9).

Author information

Authors and Affiliations

Authors

Contributions

GPM and BSS designed the study, performed the data analysis, and prepared the first drafts of the manuscript. CEB, MEAT, and RBC collected and processed the neuroimaging data, providing essential contributions to these analyses. EPO, DM, and DBK provided substantial contributions to data acquisition, analyses, and interpretation of the results. SPT and ESV were responsible for the clinical assessment of the patients and helped with the evaluation of the clinical outcomes. DLR, LAR, and EHG provided critical discussion and insights into the intellectual content of the manuscript. CHDB contributed to the conception and design of the study and participated in all its stages of its preparation. All authors carefully revised and approved the final version of this manuscript.

Corresponding author

Correspondence to Claiton Henrique Dotto Bau.

Ethics declarations

Conflict of interest

LAR has received honoraria, has been on the speakers’ bureau/advisory board, and/or has acted as a consultant for Medicine, Novartis/Sandoz, and Shire/Takeda in the last two years; and receives authorship royalties from OxfordPress and ArtMed. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by him have received unrestricted educational and research support from the following pharmaceutical companies in the last three years: Janssen-Cilag, Novartis/Sandoz, and Shire/Takeda. EHG has served as a speakers’ bureau/advisory board for Novartis and Shire Pharmaceuticals in the past three years; and has received travel awards from Novartis and Shire for taking part in psychiatric meetings. The other authors declare no conflicts of interest.

Non-financial interests

The authors have no relevant nonfinancial interests to disclose.

Ethical statement

This project was carried out following the Declaration of Helsinki. All subjects signed an informed consent form that was previously approved by the Research Ethics Committees of the participating institutions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 610 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, G.P., da Silva, B.S., Bandeira, C.E. et al. Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 273, 15–24 (2023). https://doi.org/10.1007/s00406-022-01388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-022-01388-7

Keywords

Navigation