Skip to main content
Log in

Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal–prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal–prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aas M, Dazzan P, Mondelli V et al (2014) A systematic review of cognitive function in first-episode psychosis, including a discussion on childhood trauma, stress, and inflammation. Front Psychiatry 4:1–13. https://doi.org/10.3389/fpsyt.2013.00182

    Article  Google Scholar 

  2. Aggleton JP, O’Mara SM, Vann SD et al (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307. https://doi.org/10.1111/j.1460-9568.2010.07251.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aleman A, Hijman R, De Haan EHF et al (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156(9):1358–1366. https://doi.org/10.1176/ajp.156.9.1358

    Article  CAS  PubMed  Google Scholar 

  4. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  5. Andreasen NC (1983) Scale for the assessment of negative symptoms. University of Iowa, Iowa City

    Google Scholar 

  6. Arfanakis K, Wilson RS, Barth CM et al (2016) Cognitive activity, cognitive function, and brain diffusion characteristics in old age. Brain Imaging Behav 10(2):455–463. https://doi.org/10.1007/s11682-015-9405-5.Cognitive

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barnett JH, Sahakian BJ, Werners U et al (2005) Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35:1031–1041

    Article  Google Scholar 

  8. Behrens TEJ, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  CAS  Google Scholar 

  9. Behrens TEJ, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155

    Article  CAS  Google Scholar 

  10. Benetti S, Mechelli A, Picchioni M et al (2009) Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 132:2426–2436. https://doi.org/10.1093/brain/awp098

    Article  PubMed  Google Scholar 

  11. Bora E, Yucel M, Pantelis C (2009) Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. Br J Psychiatry 195:475–482

    Article  Google Scholar 

  12. Borgwardt S, Smieskova R, Fusar-Poli P (2012) Gray matter pathology of hippocampus—a specific endophenotype for schizophrenia? Psychiatry Res Neuroimaging. https://doi.org/10.1016/j.pscychresns.2011.12.005

    Article  Google Scholar 

  13. Bozikas VPP, Andreou C (2011) Longitudinal studies of cognition in first episode psychosis: a systematic review of the literature. Aust N Z J Psychiatry 45(2):93–108. https://doi.org/10.3109/00048674.2010.541418

    Article  PubMed  Google Scholar 

  14. Bubb EJ, Kinnavane L, Aggleton JP (2017) Hippocampal–diencephalic–cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci Adv. https://doi.org/10.1177/2398212817723443

    Article  PubMed  PubMed Central  Google Scholar 

  15. Budde MD, Xie M, Cross AH et al (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813. https://doi.org/10.1523/JNEUROSCI.4605-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641. https://doi.org/10.1016/S0896-6273(02)00830-9

    Article  CAS  PubMed  Google Scholar 

  17. Cambridge Cognition (2016) CANTAB [Cognitive assessment software]. www.cantab.com. Accessed 7 Oct 2016

  18. Chakravarty MM, Steadman P, van Eede MC et al (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34(10):2635–2654. https://doi.org/10.1002/hbm.22092

    Article  PubMed  Google Scholar 

  19. Cropley VL, Klauser P, Lenroot RK et al (2017) Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry 174(3):286–295. https://doi.org/10.1176/appi.ajp.2016.16050610

    Article  PubMed  Google Scholar 

  20. Della Nave R, Ginestroni A, Diciotti S et al (2011) Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 53(5):367–372. https://doi.org/10.1007/s00234-010-0807-1

    Article  PubMed  Google Scholar 

  21. Di Biase MA, Cropley VL, Baune BT et al (2017) White matter connectivity disruptions in early and chronic schizophrenia. Psychol Med 47(16):2797–2810. https://doi.org/10.1017/S0033291717001313

    Article  PubMed  Google Scholar 

  22. Dolleman-ven der Weel MJ, Griffin AL, Ito HT et al (2019) The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 26:191–205. https://doi.org/10.1101/lm.048389.118.Freely

    Article  Google Scholar 

  23. Douet V, Chang L (2015) Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Front Aging Neurosci 7:1–19. https://doi.org/10.3389/fnagi.2014.00343

    Article  Google Scholar 

  24. Douet V, Chang L, Pritchett A et al (2014) Schizophrenia-risk variant rs6994992 in the neuregulin-1 gene on brain developmental trajectories in typically developing children. Transl Psychiatry. https://doi.org/10.1038/tp.2014.41

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eichenbaum H (2017) Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci 18(9):547–558. https://doi.org/10.1038/nrn.2017.74

    Article  CAS  PubMed  Google Scholar 

  26. Eyler Zorrilla LT, Jeste DV, Paulus M et al (2003) Functional abnormalities of medial temporal cortex during novel picture learning among patients with chronic schizophrenia. Schizophr Res 59(2–3):187–198. https://doi.org/10.1016/S0920-9964(01)00340-1

    Article  PubMed  Google Scholar 

  27. Fett AKJ, Velthorst E, Reichenberg A et al (2020) Long-term changes in cognitive functioning in individuals with psychotic disorders: findings from the suffolk county mental health project. JAMA Psychiat 77(4):387–396. https://doi.org/10.1001/jamapsychiatry.2019.3993

    Article  Google Scholar 

  28. Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767. https://doi.org/10.1038/nrn4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fields RD, Bukalo O (2020) Myelin makes memories. Nat Neurosci 23:469–470. https://doi.org/10.1038/s41593-020-0606-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. First M, Spitzer R, Gibbon M et al (2002) Structured clinical interview for DSM-IV-TR axis I disorders, research version patient. New York State Psychiatric Institute, New York

    Google Scholar 

  31. Glahn DC, Ragland JD, Abramoff A et al (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25(1):60–69. https://doi.org/10.1002/hbm.20138

    Article  PubMed  PubMed Central  Google Scholar 

  32. Godsil BP, Kiss JP, Spedding M et al (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23:1165–1181

    Article  CAS  Google Scholar 

  33. Goldberg TE, Weinberger DR (1996) Effects of neuroleptic medications on the cognition of patients with schizophrenia: a review of recent studies. J Clin Psychiatry 57(Supp. 9):62–65

    CAS  PubMed  Google Scholar 

  34. Goldman HH, Skodol A, Lave TR (1992) Revising axis V for DSM-IV: a review of measures of social functioning. Am J Psychiatry 149:1148–1156

    Article  CAS  Google Scholar 

  35. Green AE, Croft RJ, Maller JJ et al (2016) White matter correlates of episodic memory encoding and retrieval in schizophrenia. Psychiatry Res Neuroimaging 254:188–198. https://doi.org/10.1016/j.pscychresns.2016.07.002

    Article  PubMed  Google Scholar 

  36. Green MF, Kern RS, Braff DL et al (2000) Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? Schizophr Bull 26(1):119–136. https://doi.org/10.1093/oxfordjournals.schbul.a033430

    Article  CAS  PubMed  Google Scholar 

  37. Gur REC, Turetsky BI, Cowell PE et al (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57(8):769–775. https://doi.org/10.1001/archpsyc.57.8.769

    Article  CAS  PubMed  Google Scholar 

  38. Habib R, Nyberg L, Tulving E (2003) Hemispheric asymmetries of memory: the HERA model revisited. Trends Cogn Sci 7(6):241–245. https://doi.org/10.1016/S1364-6613(03)00110-4

    Article  PubMed  Google Scholar 

  39. Haijma SV, Van Haren N, Cahn W et al (2013) Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull 39(5):1129–1138. https://doi.org/10.1093/schbul/sbs118

    Article  PubMed  Google Scholar 

  40. Hasan A, Wobrock T, Falkai P et al (2011) Hippocampal integrity and neurocognition in first-episode schizophrenia: a multidimensional study. World J Biol Psychiatry 15:1–12. https://doi.org/10.3109/15622975.2011.620002

    Article  Google Scholar 

  41. Heckers S, Rauch SL, Goff D et al (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1(4):318–323. https://doi.org/10.1038/1137

    Article  CAS  PubMed  Google Scholar 

  42. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3):426–445. https://doi.org/10.1037/0894-4105.12.3.426

    Article  CAS  PubMed  Google Scholar 

  43. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  44. Jin J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:1–8. https://doi.org/10.3389/fnsys.2015.00170

    Article  CAS  Google Scholar 

  45. Juola P, Miettunen J, Salo H et al (2015) Neurocognition as a predictor of outcome in schizophrenia in the Northern Finland Birth Cohort 1966. Schizophr Res Cogn 2(3):113–119. https://doi.org/10.1016/j.scog.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalmady SV, Shivakumar V, Arasappa R et al (2017) Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Res Neuroimaging 263:93–102. https://doi.org/10.1016/j.pscychresns.2017.03.014

    Article  PubMed  Google Scholar 

  47. Kay S, Fiszbein A, Opler L (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–267

    Article  CAS  Google Scholar 

  48. Kelly S, Jahanshad N, Zalesky A et al (2017) Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry. https://doi.org/10.1038/mp.2017.170

    Article  PubMed  PubMed Central  Google Scholar 

  49. Knierim JJ (2015) The hippocampus. Curr Biol 25(23):R1116–R1121. https://doi.org/10.1016/j.cub.2015.10.049

    Article  CAS  PubMed  Google Scholar 

  50. Knöchel C, Stäblein M, Storchak H et al (2014) Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. NeuroImage Clin 6:134–144. https://doi.org/10.1016/j.nicl.2014.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kubicki M, Westin CF, Maier SE et al (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159(5):813–820. https://doi.org/10.1176/appi.ajp.159.5.813

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lancaster MA, Seidenberg M, Smith JC et al (2016) Diffusion tensor imaging predictors of episodic memory decline in healthy elders at genetic risk for Alzheimer’s disease. J Int Neuropsychol Soc 22:1005–1015. https://doi.org/10.1017/S1355617716000904

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lappin JM, Morgan C, Chalavi S et al (2013) Bilateral hippocampal increase following first­episode psychosis is associated with good clinical, functional and cognitive outcomes. Psychol Med. https://doi.org/10.1017/S0033291713001712

    Article  PubMed  Google Scholar 

  54. Ledoux AA, Phillips JL, Labelle A et al (2013) Decreased fMRI activity in the hippocampus of patients with schizophrenia compared to healthy control participants, tested on a wayfinding task in a virtual town. Psychiatry Res Neuroimaging 211(1):47–56. https://doi.org/10.1016/j.pscychresns.2012.10.005

    Article  Google Scholar 

  55. Lee SH, Kubicki M, Asami T et al (2013) Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor imaging (DTI) study. Schizophr Res 143:231–238. https://doi.org/10.1016/j.schres.2012.11.029

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leucht S, Rothe P, Davis JM et al (2013) Equipercentile linking of the BPRS and the PANSS. Eur Neuropsychopharmacol 23:956–959. https://doi.org/10.1016/j.euroneuro.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  57. Lieberman JA, Girgis RR, Brucato G et al (2018) Hippocampal dysfunction in the pathophysiology of schizophrenia : a selective review and hypothesis for early detection and intervention. Mol Psychiatry 5:1764–1772. https://doi.org/10.1038/mp.2017.249

    Article  Google Scholar 

  58. Liu X, Lai Y, Wang X et al (2013) Reduced white matter integrity and cognitive deficit in never-medicated chronic schizophrenia: a diffusion tensor study using TBSS. Behav Brain Res 252:157–163. https://doi.org/10.1016/j.bbr.2013.05.061

    Article  PubMed  Google Scholar 

  59. Mayo CD, Garcia-Barrera MA, Mazerolle EL et al (2019) Relationship between DTI metrics and cognitive function in Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00436

    Article  PubMed  PubMed Central  Google Scholar 

  60. Metzler-Baddeley C, Jones DK, Belaroussi B et al (2011) Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J Neurosci 31(37):13236–13245. https://doi.org/10.1523/JNEUROSCI.2317-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meyer-Lindenberg A, Poline J-B, Kohn PD et al (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158(11):1809–1817. https://doi.org/10.1176/appi.ajp.158.11.1809

    Article  CAS  PubMed  Google Scholar 

  62. Meyer-lindenberg AS, Olsen RK, Kohn PD et al (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386

    Article  Google Scholar 

  63. Mielke MM, Okonkwo OC, Oishi K et al (2012) Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimer’s Dement 8(2):105–113. https://doi.org/10.1016/j.jalz.2011.05.2416

    Article  Google Scholar 

  64. Naya Y (2016) Declarative associative memory. In: Pfaff DW, Volkow ND (eds) Neuroscience in the 21st century. Springer, New York, pp 1–27. https://doi.org/10.1007/978-1-4614-6434-1_162-1

  65. Nestor PG, Kubicki M, Kuroki N et al (2007) Episodic memory and neuroimaging of hippocampus and fornix in chronic schizophrenia. Psychiatry Res Neuroimaging 155:21–28. https://doi.org/10.1016/j.pscychresns.2006.12.020

    Article  Google Scholar 

  66. Newcombe V, Chatfield D, Outtrim J et al (2011) Mapping traumatic axonal injury using diffusion tensor imaging: correlations with functional outcome. PLoS ONE 6(5):e19214-19214. https://doi.org/10.1371/journal.pone.0019214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen TT, Eyler LT, Jeste DV (2018) Systemic biomarkers of accelerated aging in schizophrenia: a critical review and future directions. Schizophr Bull 44(2):398–408. https://doi.org/10.1093/schbul/sbx069

    Article  PubMed  Google Scholar 

  68. Nuechterlein KH, Subotnik KL, Green MF et al (2011) Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull 37(SUPPL. 2):33–40. https://doi.org/10.1093/schbul/sbr084

    Article  Google Scholar 

  69. Overall J, Gorham D (1962) The Brief Psychiatric Rating Scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  70. Pan S, Mayoral SR, Choi HS et al (2020) Preservation of a remote fear memory requires new myelin formation. Nat Neurosci 23:487–499. https://doi.org/10.1038/s41593-019-0582-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parent MA, Wang L, Su J et al (2010) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 20(2):393–403. https://doi.org/10.1093/cercor/bhp108

    Article  PubMed  Google Scholar 

  72. Pergola G, Suchan B (2013) Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 7(November):162. https://doi.org/10.3389/fnbeh.2013.00162

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pipitone J, Park MTM, Winterburn J et al (2014) Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101:494–512. https://doi.org/10.1016/j.neuroimage.2014.04.054

    Article  PubMed  Google Scholar 

  74. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23(17):R764–R773. https://doi.org/10.1016/j.cub.2013.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Prouteau A, Verdoux H, Briand C et al (2005) Cognitive predictors of psychosocial functioning outcome in schizophrenia: a follow-up study of subjects participating in a rehabilitation program. Schizophr Res 77:343–353. https://doi.org/10.1016/j.schres.2005.03.001

    Article  PubMed  Google Scholar 

  76. Ragland JD, Ph D, Gur RC et al (2004) Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry 161:1004–1015

    Article  Google Scholar 

  77. Ragland JD, Ranganath C, Phillips J et al (2015) Cognitive control of episodic memory in schizophrenia: differential role of dorsolateral and ventrolateral prefrontal cortex. Front Hum Neurosci 9:1–10. https://doi.org/10.3389/fnhum.2015.00604

    Article  Google Scholar 

  78. Rasetti R, Sambataro F, Chen Q et al (2011) Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 68(12):1207–1217. https://doi.org/10.1001/archgenpsychiatry.2011.103

    Article  PubMed  Google Scholar 

  79. Ringman JM, O’Neill J, Geschwind D et al (2007) Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130(7):1767–1776. https://doi.org/10.1093/brain/awm102

    Article  PubMed  Google Scholar 

  80. Rodríguez-Sánchez JM, Ayesa-Arriola R, Pérez-Iglesias R et al (2013) Course of cognitive deficits in first episode of non-affective psychosis: a 3-year follow-up study. Schizophr Res 150:121–128. https://doi.org/10.1016/j.schres.2013.06.042

    Article  PubMed  Google Scholar 

  81. Rudebeck SR, Scholz J, Millington R et al (2009) Fornix microstructure correlates with recollection but not familiarity memory. J Neurosci 29(47):14987–14992. https://doi.org/10.1523/JNEUROSCI.4707-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rushe TM, Woodruff PWR, Murray RM et al (1999) Episodic memory and learning in patients with chronic schizophrenia. Schizophr Res 35(1):85–96. https://doi.org/10.1016/S0920-9964(98)00117-0

    Article  CAS  PubMed  Google Scholar 

  83. Schneider M, Walter H, Moessnang C et al (2017) Altered DLPFC-hippocampus connectivity during working memory: independent replication and disorder specificity of a putative genetic risk phenotype for schizophrenia. Schizophr Bull 43(5):1114–1122. https://doi.org/10.1093/schbul/sbx001

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sheehan DV, Lecrubier MD, Sheehan KH et al (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(20):22–33

    PubMed  Google Scholar 

  85. Sigurdsson T, Duvarci S (2016) Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front Syst Neurosci 9:1–18. https://doi.org/10.3389/fnsys.2015.00190

    Article  CAS  Google Scholar 

  86. Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4:637–648. https://doi.org/10.1038/nrn1178

    Article  CAS  PubMed  Google Scholar 

  87. Smith DM, Mizumori SJY (2006) Hippocampal place cells, context, and episodic memory. Hippocampus 16:716–729. https://doi.org/10.1002/hipo

    Article  PubMed  Google Scholar 

  88. Song SK, Sun SW, Ju WK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722. https://doi.org/10.1016/j.neuroimage.2003.07.005

    Article  PubMed  Google Scholar 

  89. Sota TL, Heinrichs RW (2004) Demographic, clinical, and neurocognitive predictors of quality of life in schizophrenia patients receiving conventional neuroleptics. Compr Psychiatry 45(5):415–421. https://doi.org/10.1016/j.comppsych.2004.06.010

    Article  PubMed  Google Scholar 

  90. Steadman PE, Xia F, Ahmed M et al (2020) Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105(1):150-164.e6. https://doi.org/10.1016/j.neuron.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  91. Takei K, Yamasue H, Abe O et al (2008) Disrupted integrity of the fornix is associated with impaired memory organization in schizophrenia. Schizophr Res 103:52–61. https://doi.org/10.1016/j.schres.2008.03.008

    Article  PubMed  Google Scholar 

  92. Tamminga CA, Stan AD, Wagner AD (2010) The hippocampal formation in schizophrenia. Am J Psychiatry 167(10):1178–1193. https://doi.org/10.1176/appi.ajp.2010.09081187

    Article  PubMed  Google Scholar 

  93. Tregellas JR, Smucny J, Harris JG et al (2014) Intrinsic hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. Am J Psychiatry 171(5):549–556. https://doi.org/10.1055/s-0034-1399347

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25

    Article  Google Scholar 

  95. Valli I, Tognin S, Fusar-Poli P et al (2012) Episodic memory dysfunction in individuals at high-risk of psychosis: a systematic review of neuropsychological and neurofunctional studies. Curr Pharm Des 18:443–458. https://doi.org/10.2174/138161212799316271

    Article  CAS  PubMed  Google Scholar 

  96. Vargha-khadem F, Gadian DG, Watkins KE et al (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:376–380

    Article  CAS  Google Scholar 

  97. Velligan DI, Bow-Thomas CC, Mahurin RK et al (2000) Do specific neurocognitive deficits predict specific domains of community function in schizophrenia? J Nerv Ment Dis 188(8):518–524. https://doi.org/10.1097/00005053-200008000-00007

    Article  CAS  PubMed  Google Scholar 

  98. Wannan CMJ, Bartholomeusz CF, Cropley VL et al (2018) Deterioration of visuospatial associative memory following a first psychotic episode: a long-term follow-up study. Psychol Med 48(1):132–141. https://doi.org/10.1017/s003329171700157x

    Article  CAS  PubMed  Google Scholar 

  99. Cassandra MJW, Cropley VL, Chakravarty MM et al (2018) Hippocampal subfields and visuospatial associative memory across stages of schizophrenia-spectrum disorder. Psychol Med 49(14):2452–2462. https://doi.org/10.1017/s0033291718003458

    Article  Google Scholar 

  100. Wechsler D (1997) Wechsler Adult Intelligence Scale, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  101. Wechsler D (2001) Wechsler Test of Adult Reading (WTAR). The Psychological Corporation, San Antonio

    Google Scholar 

  102. Weiss AP, Schacter DL, Goff DC et al (2003) Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53(1):48–55. https://doi.org/10.1016/S0006-3223(02)01541-X

    Article  PubMed  Google Scholar 

  103. Wolff M, Vann SD (2019) The cognitive thalamus as a gateway to mental representations. J Neurosci 39(1):3–14. https://doi.org/10.1523/JNEUROSCI.0479-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zahr NM, Rohlfing T, Pfefferbaum A et al (2009) Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 44(3):1050–1062. https://doi.org/10.1016/j.neuroimage.2008.09.046

    Article  PubMed  Google Scholar 

  105. Zanelli J, Mollon J, Sandin S et al (2019) Cognitive change in schizophrenia and other psychoses in the decade following the first episode. Am J Psychiatry 176(10):811–819. https://doi.org/10.1176/appi.ajp.2019.18091088

    Article  PubMed  Google Scholar 

  106. Zhou Y, Shu N, Liu Y et al (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100(1–3):120–132. https://doi.org/10.1016/j.schres.2007.11.039

    Article  PubMed  Google Scholar 

  107. Zhuang L, Sachdev PS, Trollor JN et al (2013) Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment. PLoS ONE 8(3):1–10. https://doi.org/10.1371/journal.pone.0058887

    Article  CAS  Google Scholar 

  108. Zierhut K, Bogerts B, Schott B et al (2010) The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. Psychiatry Res Neuroimaging 183(3):187–194. https://doi.org/10.1016/j.pscychresns.2010.03.007

    Article  Google Scholar 

  109. Zierhut KC, Graßmann R, Kaufmann J et al (2013) Hippocampal CA1 deformity is related to symptom severity and antipsychotic dosage in schizophrenia. Brain 136(3):804–814. https://doi.org/10.1093/brain/aws335

    Article  PubMed  Google Scholar 

  110. Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Annu Rev Neurosci 16(1):547–563. https://doi.org/10.1146/annurev.ne.16.030193.002555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by National Health and Medical Research Council (Grant numbers 1105825, 1150083 and 1177370) and Brain and Behavior Research Foundation (Grant number 21660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra M. J. Wannan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest statement.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wannan, C.M.J., Bartholomeusz, C.F., Pantelis, C. et al. Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness. Eur Arch Psychiatry Clin Neurosci 272, 971–983 (2022). https://doi.org/10.1007/s00406-021-01333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01333-0

Keywords

Navigation