Skip to main content
Log in

Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Characterizing the properties of brain networks across mood states seen in bipolar disorder (BP) can provide a deeper insight into the mechanisms involved in this type of affective disorder. In this study, graph theoretical methods were used to examine global, modular and nodal brain network topology in the resting state using functional magnetic resonance imaging data acquired from 95 participants, including those with bipolar depression (BPD; n = 30) and bipolar mania (BPM; n = 39) and healthy control (HC) subjects (n = 26). The threshold value of the individual subjects’ connectivity matrix varied from 0.15 to 0.30 with steps of 0.01. We found that: (1) at the global level, BP patients showed a significantly increased global efficiency and synchronization and a decreased path length; (2) at the nodal level, BP patients showed impaired nodal parameters, predominantly within the frontoparietal and limbic sub-network; (3) at the module level, BP patients were characterized by denser FCs (edges) between Module III (the front-parietal system) and Module V (limbic/paralimbic systems); (4) at the nodal level, the BPD and BPM groups showed state-specific differences in the orbital part of the left superior-frontal gyrus, right putamen, right parahippocampal gyrus and left fusiform gyrus. These results revealed abnormalities in topological organization in the whole brain, especially in the frontoparietal-limbic circuit in both BPD and BPM. These deficits may reflect the pathophysiological processes occurring in BP. In addition, state-specific regional nodal alterations in BP could potentially provide biomarkers of conversion across different mood states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article.

References

  1. Altinay MI, Hulvershorn LA, Karne H, Beall EB, Anand A (2016) Differential resting-state functional connectivity of striatal subregions in bipolar depression and hypomania. Brain Connect 6:255–265

    Article  PubMed  PubMed Central  Google Scholar 

  2. Altshuler L, Bookheimer S, Townsend J, Ma P, Sabb F, Mintz J (2008) Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study. Bipolar Disord 10:708–717

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J, Corlett PR, Kober H, Gruber J, Repovs G, Cole MW, Krystal JH, Pearlson GD, Glahn DC (2013) Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol Psychiatry 73:565–573

    Article  PubMed  Google Scholar 

  4. Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18:177–185

    Article  PubMed  Google Scholar 

  5. Atagün Mİ, Şıkoğlu EM et al (2018) Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: a proton magnetic resonance spectroscopy study. J Affect Disord 235:15–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bassett DS, Bullmore ED (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  PubMed  Google Scholar 

  7. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  8. Bermpohl F, Kahnt T, Dalanay U, Hägele C, Sajonz B, Wegner T, Stoy M, Adli M, Krüger S, Wrase J, Ströhle A, Bauer M, Heinz A (2010) Altered representation of expected value in the orbitofrontal cortex in mania. Hum Brain Mapp 31:958–969

    Article  PubMed  Google Scholar 

  9. Betzel RF, Medaglia JD, Papadopoulos L, Baum GL, Gur R, Gur R, Roalf D, Satterthwaite TD, Bassett DS (2017) The modular organization of human anatomical brain networks: accounting for the cost of wiring. Netw Neurosci 1:42–68

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brady R Jr, Ongur D, Keshavan M (2014) Neurobiology of mood-state shifts in bipolar disorder: a selective review and a hypothesis. Harvard Rev Psychiatry 22:23–30

    Article  Google Scholar 

  11. Brady RO, Masters GA et al (2016) State dependent cortico-amygdala circuit dysfunction in bipolar disorder. J Affect Disord 201:79–87

    Article  PubMed  PubMed Central  Google Scholar 

  12. Breakspear M, Roberts G, Green MJ, Nguyen VT, Frankland A, Levy F, Lenroot R, Mitchell PB (2015) Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder. Brain 138:3427–3439

    Article  PubMed  Google Scholar 

  13. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  14. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Article  CAS  PubMed  Google Scholar 

  15. Caseras X, Lawrence NS, Murphy K, Wise RG, Phillips ML (2013) Ventral striatum activity in response to reward: differences between bipolar I and II disorders. Am J Psychiatry 170:533–541

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed  PubMed Central  Google Scholar 

  17. Chase HW, Nusslock R, Almeida JR, Forbes EE, LaBarbara EJ, Phillips ML (2013) Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disord 15:839–854

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dalgleish T (2004) The emotional brain. Nat Rev Neurosci 5:583–589

    Article  PubMed  CAS  Google Scholar 

  19. Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, Hietala J, Lawrie SM, Martinot J-L, McIntosh AM, Meisenzahl E, Frangou S (2012) Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 22:100–113

    Article  CAS  PubMed  Google Scholar 

  20. Doucet GE, Bassett DS et al (2017) The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry 174(12):1214–1222

    Article  PubMed  PubMed Central  Google Scholar 

  21. Drobinin V, Slaney C, Garnham J, Propper L, Uher R, Alda M, Hajek T (2019) Larger right IFG volume and surface area in participants at genetic risk for bipolar disorders. Psychol Med 49:1308–1315

    Article  CAS  PubMed  Google Scholar 

  22. Dvorak J, Hilke M et al (2019) Aberrant brain network topology in fronto-limbic circuitry differentiates euthymic bipolar disorder from recurrent major depressive disorder. Brain Behav 9:e01257

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ellard KK, Gosai AK et al (2019) Deficits in frontoparietal activation and anterior insula functional connectivity during regulation of cognitive-affective interference in bipolar disorder. Bipolar Disord 21(3):244–258

    Article  PubMed  Google Scholar 

  24. Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Favre P, Baciu M, Pichat C, Bougerol T, Polosan M (2014) fMRI evidence for abnormal resting-state functional connectivity in euthymic bipolar patients. J Affect Disord 165:182–189

    Article  PubMed  Google Scholar 

  26. Fleck DE, Welge JA, Eliassen JC, Adler CM, DelBello MP, Strakowski SM (2018) Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure. J Affect Disord 234:14–19

    Article  PubMed  Google Scholar 

  27. Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22

    PubMed  PubMed Central  Google Scholar 

  28. Frey BN, Andreazza AC, Nery FG, Martins MR, Quevedo J, Soares JC, Kapczinski F (2007) The role of hippocampus in the pathophysiology of bipolar disorder. Behav Pharmacol 18:419–430

    Article  PubMed  Google Scholar 

  29. Grande I, Berk M, Birmaher B, Vieta E (2016) Bipolar disorder. Lancet (London, England) 387:1561–1572

    Article  Google Scholar 

  30. He H, Yu Q, Du Y, Vergara V, Victor TA, Drevets WC, Savitz JB, Jiang T, Sui J, Calhoun VD (2016) Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders. J Affect Disord 190:483–493

    Article  PubMed  Google Scholar 

  31. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4:e5226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hajek T, Carrey N et al (2005) Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 7(5):393–403

    Article  PubMed  Google Scholar 

  33. Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003) Response inhibition and impulsivity: an fMRI study. Neuropsychologia 41:1959–1966

    Article  CAS  PubMed  Google Scholar 

  34. Hwang J, Lyoo IK et al (2006) Basal ganglia shape alterations in bipolar disorder. Am J Psychiatry 163(2):276–285

    Article  PubMed  Google Scholar 

  35. Jeganathan J, Perry A, Bassett DS, Roberts G, Mitchell PB, Breakspear M (2018) Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage Clin 19:71–81

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang X, Dai X, Kale Edmiston E, Zhou Q, Xu K, Zhou Y, Wu F, Kong L, Wei S, Zhou Y, Chang M, Geng H, Wang D, Wang Y, Cui W, Wang F, Tang Y (2017) Alteration of cortico-limbic-striatal neural system in major depressive disorder and bipolar disorder. J Affect Disord 221:297–303

    Article  PubMed  Google Scholar 

  37. Johnson SL, Mehta H, Ketter TA, Gotlib IH, Knutson B (2019) Neural responses to monetary incentives in bipolar disorder. Neuroimage Clin 24:102018

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karim HT, Perlman SB (2017) Neurodevelopmental maturation as a function of irritable temperament: insights From a naturalistic emotional video viewing paradigm. Hum Brain Mapp 38:5307–5321

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim D-J, Bolbecker AR, Howell J, Rass O, Sporns O, Hetrick WP, Breier A, O’Donnell BF (2013) Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. Neuroimage Clin 2:414–423

    Article  PubMed  PubMed Central  Google Scholar 

  41. Knyazev GG, Slobodskoi-Plyusnin YY, Savost’yanov AN, Levin EA, Bocharov AV (2010) Reciprocal relationships between the oscillatory systems of the brain. Neurosci Behav Physiol 40:29–35

    Article  CAS  PubMed  Google Scholar 

  42. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee I, Nielsen K, Nawaz U, Hall M, Öngür D, Keshavan M, Brady R Jr (2019) Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord 244:115–123

    Article  PubMed  Google Scholar 

  44. Lencer R, Yao L, Reilly JL, Keedy SK, McDowell JE, Keshavan MS, Pearlson GD, Tamminga CA, Gershon ES, Clementz BA, Lui S, Sweeney JA (2019) Alterations in intrinsic fronto-thalamo-parietal connectivity are associated with cognitive control deficits in psychotic disorders. Hum Brain Mapp 40:163–174

    Article  PubMed  Google Scholar 

  45. Leow A, Ajilore O, Zhan L, Arienzo D, GadElkarim J, Zhang A, Moody T, Van Horn J, Feusner J, Kumar A, Thompson P, Altshuler L (2013) Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses. Biol Psychiatry 73:183–193

    Article  PubMed  Google Scholar 

  46. Li G, Liu P, Andari E, Zhang A, Zhang K (2018) The role of amygdala in patients with euthymic bipolar disorder during resting state. Front Psychiatry 9:445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li M, Huang C et al (2015) Contrasting and convergent patterns of amygdala connectivity in mania and depression: a resting-state study. J Affect Disord 173:53–58

    Article  PubMed  Google Scholar 

  48. Lim CS, Baldessarini RJ, Vieta E, Yucel M, Bora E, Sim K (2013) Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neurosci Biobehav Rev 37:418–435

    Article  PubMed  Google Scholar 

  49. Lisy ME, Jarvis KB, DelBello MP, Mills NP, Weber WA, Fleck D, Strakowski SM, Adler CM (2011) Progressive neurostructural changes in adolescent and adult patients with bipolar disorder. Bipolar Disord 13:396–405

    Article  PubMed  Google Scholar 

  50. Liu C-H, Li F, Li S-F, Wang Y-J, Tie C-L, Wu H-Y, Zhou Z, Zhang D, Dong J, Yang Z, Wang C-Y (2012) Abnormal baseline brain activity in bipolar depression: a resting state functional magnetic resonance imaging study. Psychiatry Res 203:175–179

    Article  PubMed  Google Scholar 

  51. Lois G, Linke J, Wessa M (2014) Altered functional connectivity between emotional and cognitive resting state networks in euthymic bipolar I disorder patients. PLoS ONE 9:e107829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lv D, Lin W et al (2016) Decreased functional connectivity in the language regions in bipolar patients during depressive episodes but not remission. J Affect Disord 197:116–124

    Article  PubMed  Google Scholar 

  53. Manelis A, Ladouceur CD, Graur S, Monk K, Bonar LK, Hickey MB, Dwojak AC, Axelson D, Goldstein BI, Goldstein TR, Bebko G, Bertocci MA, Gill MK, Birmaher B, Phillips ML (2016) Altered functioning of reward circuitry in youth offspring of parents with bipolar disorder. Psychol Med 46:197–208

    Article  CAS  PubMed  Google Scholar 

  54. Marchand WR, Yurgelun-Todd D (2010) Striatal structure and function in mood disorders: a comprehensive review. Bipolar Disord 12:764–785

    Article  PubMed  Google Scholar 

  55. McPhilemy G, Nabulsi L et al (2020) Resting-state network patterns underlying cognitive function in bipolar disorder: a graph theoretical analysis. Brain Connect 10:355–367

    Article  PubMed  Google Scholar 

  56. Nabulsi L, McPhilemy G et al (2019) Bipolar disorder and gender are associated with frontolimbic and basal ganglia dysconnectivity: a study of topological variance using network analysis. Brain Connect 9(10):745–759

    Article  PubMed  Google Scholar 

  57. Nabulsi L, McPhilemy G, Kilmartin L, Whittaker JR, Martyn FM, Hallahan B, McDonald C, Murphy K, Cannon DM (2020) Frontolimbic, frontoparietal, and default mode involvement in functional dysconnectivity in psychotic bipolar disorder. Biol Psychiatry Cognit Neurosci Neuroimaging 5:140

    Article  Google Scholar 

  58. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(11):208701

    Article  CAS  PubMed  Google Scholar 

  59. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  60. Nusslock R, Almeida JR, Forbes EE, Versace A, Frank E, Labarbara EJ, Klein CR, Phillips ML (2012) Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 14:249–260

    Article  PubMed  Google Scholar 

  61. Nusslock R, Harmon-Jones E, Alloy LB, Urosevic S, Goldstein K, Abramson LY (2012) Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder. J Abnorm Psychol 121:592–601

    Article  PubMed  PubMed Central  Google Scholar 

  62. O’Sullivan N, Szczepanowski R, El-Deredy W, Mason L, Bentall RP (2011) fMRI evidence of a relationship between hypomania and both increased goal-sensitivity and positive outcome-expectancy bias. Neuropsychologia 49:2825–2835

    Article  PubMed  Google Scholar 

  63. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:242–249

    Article  PubMed  Google Scholar 

  64. Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93:603–608

    Article  PubMed  Google Scholar 

  65. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202

    Article  CAS  PubMed  Google Scholar 

  66. Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54:504–514

    Article  PubMed  Google Scholar 

  67. Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13(829):833–857

    Article  Google Scholar 

  68. Phillips ML, Swartz HA (2014) A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry 171:829–843

    Article  PubMed  PubMed Central  Google Scholar 

  69. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154

    Article  PubMed  Google Scholar 

  70. Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216

    Article  PubMed  Google Scholar 

  71. Roberts G, Lord A, Frankland A, Wright A, Lau P, Levy F, Lenroot RK, Mitchell PB, Breakspear M (2017) Functional dysconnection of the IFG in young people with bipolar disorder or at genetic high risk. Biol Psychiatry 81:718–727

    Article  PubMed  Google Scholar 

  72. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  73. Satzer D, Bond DJ (2016) Mania secondary to focal brain lesions: implications for understanding the functional neuroanatomy of bipolar disorder. Bipolar Disord 18:205–220

    Article  PubMed  Google Scholar 

  74. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N (2008) The distribution of category and location information across object-selective regions in human visual cortex. Proc Natl Acad Sci USA 105:4447–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sibille E, Morris HM, Kota RS, Lewis DA (2011) GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 14:721–734

    Article  CAS  PubMed  Google Scholar 

  77. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6:e25031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spielberg JM, Beall EB, Hulvershorn LA, Altinay M, Karne H, Anand A (2016) Resting state brain network disturbances related to hypomania and depression in medication-free bipolar disorder. Neuropsychopharmacology 41:3016–3024

    Article  PubMed  PubMed Central  Google Scholar 

  79. Spielberg JM, Matyi MA, Karne H, Anand A (2019) Lithium monotherapy associated longitudinal effects on resting state brain networks in clinical treatment of bipolar disorder. Bipolar Disord 21:361–371

    Article  CAS  PubMed  Google Scholar 

  80. Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15:247–262

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640

    Article  PubMed  Google Scholar 

  82. Strakowski SM, DelBello MP et al (2004) The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 10(1):105–116

    Article  CAS  Google Scholar 

  83. Taylor JC, Wiggett AJ, Downing PE (2007) Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. J Neurophysiol 98:1626–1633

    Article  PubMed  Google Scholar 

  84. Torrisi S, Moody TD, Vizueta N, Thomason ME, Monti MM, Townsend JD, Bookheimer SY, Altshuler LL (2013) Differences in resting corticolimbic functional connectivity in bipolar I euthymia. Bipolar Disord 15:156–166

    Article  PubMed  PubMed Central  Google Scholar 

  85. Townsend J, Altshuler LL (2012) Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 14:326–339

    Article  PubMed  Google Scholar 

  86. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  87. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    Article  PubMed  CAS  Google Scholar 

  88. van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in Schizophrenia: a graph theoretical analysis. J Neurosci 30(47):15915–15926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang X, Han Z, He Y, Caramazza A, Song L, Bi Y (2013) Where color rests: spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance. Neuroimage 76:252–263

    Article  PubMed  Google Scholar 

  92. Wang Y, Deng F, Jia Y, Wang J, Zhong S, Huang H, Chen L, Chen G, Hu H, Huang L, Huang R (2019) Disrupted rich club organization and structural brain connectome in unmedicated bipolar disorder. Psychol Med 49:510–518

    Article  PubMed  Google Scholar 

  93. Wang Y, Wang J, Jia Y, Zhong S, Niu M, Sun Y, Qi Z, Zhao L, Huang L, Huang R (2017) Shared and specific intrinsic functional connectivity patterns in unmedicated bipolar disorder and major depressive disorder. Sci Rep 7:3570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang Y, Wang J, Jia Y, Zhong S, Zhong M, Sun Y, Niu M, Zhao L, Zhao L, Pan J, Huang L, Huang R (2017) Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder. Transl Psychiatry 7:e1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weiner KS, Zilles K (2016) The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83:48–62

    Article  PubMed  Google Scholar 

  96. Wessa M, Kanske P, Linke J (2014) Bipolar disorder: a neural network perspective on a disorder of emotion and motivation. Restor Neurol Neurosci 32:51–62

    PubMed  Google Scholar 

  97. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJL, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382:1575–1586

    Article  PubMed  Google Scholar 

  98. Whittaker JR, Foley SF, Ackling E, Murphy K, Caseras X (2018) The functional connectivity between the nucleus accumbens and the ventromedial prefrontal cortex as an endophenotype for bipolar disorder. Biol Psychiatry 84:803–809

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xiao Q, Cui D et al (2019) Altered regional homogeneity in pediatric bipolar disorder during manic and euthymic state: a resting-state fMRI study. Brain Imaging Behav 13(6):1789–1798

    Article  PubMed  Google Scholar 

  100. Wiggins JL, Brotman MA, Adleman NE, Kim P, Wambach CG, Reynolds RC, Chen G, Towbin K, Pine DS, Leibenluft E (2017) Neural markers in pediatric bipolar disorder and familial risk for bipolar disorder. J Am Acad Child Adolesc Psychiatry 56:67–78

    Article  PubMed  Google Scholar 

  101. Yi HG, Leonard MK, Chang EF (2019) The encoding of speech sounds in the superior-temporalgyrus. Neuron 102:1096–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yip SW, Mackay CE, Goodwin GM (2014) Increased temporo-insular engagement in unmedicated bipolar II disorder: an exploratory resting state study using independent component analysis. Bipolar Disord 16:748–755

    Article  PubMed  Google Scholar 

  103. Yu Z, Qin J, Xiong X, Xu F, Wang J, Hou F, Yang A (2020) Abnormal topology of brain functional networks in unipolar depression and bipolar disorder using optimal graph thresholding. Prog Neuropsychopharmacol Biol Psychiatry 96:109758

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the study participants. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91432301, 81671354, and 91732303) and the Anhui Provincial Natural Science Foundation for Distinguished Young Scholars (Grant No. 1808085J23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement

The study was carried out in accordance with the recommendations of Human Brain Imaging Collection, Anhui Medical University Ethics Committee, and the protocol was approved by the Anhui Medical University Ethics Committee (No. 2019010). All subjects volunteered to participate in the study and signed a written informed consent form after receiving a full written and verbal explanation of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, H., Zhang, A. et al. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study. Eur Arch Psychiatry Clin Neurosci 271, 1379–1391 (2021). https://doi.org/10.1007/s00406-020-01219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01219-7

Keywords

Navigation