Skip to main content

High-intensity interval training and active video gaming improve neurocognition in schizophrenia: a randomized controlled trial

Abstract

There is a need for treatments targeting neurocognitive dysfunctions in schizophrenia. The aim of this study was to investigate the neurocognitive effect of aerobic high-intensity interval training (HIIT). A comparison group performed sport simulating active video gaming (AVG). We anticipated that HIIT would improve neurocognition beyond any effect of AVG, due to engagement in higher intensity cardiorespiratory demands. Recent research on the beneficial neurocognitive effect of AVG challenges this expectation but added new relevance to comparing the two interventions. This is an observer-blinded randomized controlled trial. Eighty-two outpatients diagnosed with schizophrenia were allocated to HIIT (n = 43) or AVG (n = 39). Both groups received two supervised sessions per week for 12 weeks. The attrition rate was 31%, and 65% of the participants were defined as protocol compliant study completers. Intention-to-treat analyses showed significant improvements in the neurocognitive composite score from baseline to post-intervention and from baseline to 4 months follow-up in the total sample. The same pattern of results was found in several subdomains. Contrary to our hypothesis, we found no interaction effects of time and group, indicating equal effects in both groups. Separate within-group analysis unexpectedly showed trends of differential effects in the learning domain, as HIIT showed post-intervention improvement in verbal but not visual learning, while AVG showed improvement in visual but not verbal learning. HIIT and AVG improve neurocognition equally, suggesting that both interventions may be applied to target neurocognition in schizophrenia. Future research should investigate trends towards possible differential effects of exercise modes on neurocognitive subdomains. NCT02205684, 31.07.14.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Data are sensitive in nature and as such availability is restricted and regulated by Norwegian Laws and EC laws (GDPR).

References

  1. Nuechterlein KH, Ventura J, Subotnik KL, Bartzokis G (2014) The early longitudinal course of cognitive deficits in schizophrenia. J Clin Psychiatry 75 Suppl 2(0 2):25–29. https://doi.org/10.4088/JCP.13065.su1.06

    Article  PubMed  Google Scholar 

  2. Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153(3):321–330. https://doi.org/10.1176/ajp.153.3.321

    CAS  Article  PubMed  Google Scholar 

  3. Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72(1):41–51. https://doi.org/10.1016/j.schres.2004.09.009

    Article  PubMed  Google Scholar 

  4. Milev P, Ho BC, Arndt S, Andreasen NC (2005) Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry 162(3):495–506. https://doi.org/10.1176/appi.ajp.162.3.495

    Article  PubMed  Google Scholar 

  5. Bowie CR, Harvey PD (2005) Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin N Am 28(3):613–633. https://doi.org/10.1016/j.psc.2005.05.004

    Article  Google Scholar 

  6. Lepage M, Bodnar M, Bowie CR (2014) Neurocognition: clinical and functional outcomes in schizophrenia. Can J Psychiatry 59(1):5–12. https://doi.org/10.1177/070674371405900103

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gold JM (2004) Cognitive deficits as treatment targets in schizophrenia. Schizophr Res 72(1):21–28. https://doi.org/10.1016/j.schres.2004.09.008

    Article  PubMed  Google Scholar 

  8. Firth J, Stubbs B, Rosenbaum S, Vancampfort D, Malchow B, Schuch F, Elliott R, Nuechterlein KH, Yung AR (2016) Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr Bull. https://doi.org/10.1093/schbul/sbw115

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nopoulos P, Flashman L, Flaum M, Arndt S, Andreasen N (1994) Stability of cognitive functioning early in the course of schizophrenia. Schizophr Res 14(1):29–37

    CAS  Article  PubMed  Google Scholar 

  10. Rund BR (1998) A review of longitudinal studies of cognitive functions in schizophrenia patients. Schizophr Bull 24(3):425–435. https://doi.org/10.1093/oxfordjournals.schbul.a033337

    CAS  Article  PubMed  Google Scholar 

  11. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV (2001) Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 58(1):24–32. https://doi.org/10.1001/archpsyc.58.1.24

    CAS  Article  PubMed  Google Scholar 

  12. Roseberry JE, Kristian Hill S (2014) Limited practice effects and evaluation of expectation for change: MATRICS Consensus Cognitive Battery. Schizophr Res 159(1):188–192. https://doi.org/10.1016/j.schres.2014.08.004

    Article  PubMed  Google Scholar 

  13. Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2(4):531–536. https://doi.org/10.2147/nedt.2006.2.4.531

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168(5):472–485. https://doi.org/10.1176/appi.ajp.2010.10060855

    Article  PubMed  Google Scholar 

  15. McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT (2007) A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry 164(12):1791–1802. https://doi.org/10.1176/appi.ajp.2007.07060906

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee H, Boot WR, Basak C, Voss MW, Prakash RS, Neider M, Erickson KI, Simons DJ, Fabiani M, Gratton G, Low KA, Kramer AF (2012) Performance gains from directed training do not transfer to untrained tasks. Acta Psychol 139(1):146–158. https://doi.org/10.1016/j.actpsy.2011.11.003

    Article  Google Scholar 

  17. Goldberg TE, Goldman RS, Burdick KE, Malhotra AK, Lencz T, Patel RC, Woerner MG, Schooler NR, Kane JM, Robinson DG (2007) Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry 64(10):1115–1122. https://doi.org/10.1001/archpsyc.64.10.1115

    CAS  Article  PubMed  Google Scholar 

  18. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64(6):633–647. https://doi.org/10.1001/archpsyc.64.6.633

    CAS  Article  PubMed  Google Scholar 

  19. MacKenzie NE, Kowalchuk C, Agarwal SM, Costa-Dookhan KA, Caravaggio F, Gerretsen P, Chintoh A, Remington GJ, Taylor VH, Mueller DJ, Graff-Guerrero A, Hahn MK (2018) Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front Psychiatry 9:622. https://doi.org/10.3389/fpsyt.2018.00622

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jahshan C, Rassovsky Y, Green MF (2017) Enhancing neuroplasticity to augment cognitive remediation in schizophrenia. Front Psychiatry 8(191):191. https://doi.org/10.3389/fpsyt.2017.00191

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3):426–445. https://doi.org/10.1037//0894-4105.12.3.426

    CAS  Article  PubMed  Google Scholar 

  22. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39. https://doi.org/10.1016/j.schres.2004.09.007

    Article  PubMed  Google Scholar 

  23. Dickinson D, Iannone VN, Wilk CM, Gold JM (2004) General and specific cognitive deficits in schizophrenia. Biol Psychiatry 55(8):826–833. https://doi.org/10.1016/j.biopsych.2003.12.010

    Article  PubMed  Google Scholar 

  24. Egeland J, Rund BR, Sundet K, Landro NI, Asbjornsen A, Lund A, Roness A, Stordal KI, Hugdahl K (2003) Attention profile in schizophrenia compared with depression: differential effects of processing speed, selective attention and vigilance. Acta Psychiatr Scand 108(4):276–284. https://doi.org/10.1034/j.1600-0447.2003.00146.x

    CAS  Article  PubMed  Google Scholar 

  25. Toulopoulouand T, Murray RM (2004) Verbal memory deficit in patients with schizophrenia: an important future target for treatment. Expert Rev Neurother 4(1):43–52. https://doi.org/10.1586/14737175.4.1.43

    Article  PubMed  Google Scholar 

  26. Archer T, Kostrzewa RM (2015) Physical exercise alleviates health defects, symptoms, and biomarkers in schizophrenia spectrum disorder. Neurotox Res 28(3):268–280. https://doi.org/10.1007/s12640-015-9543-y

    CAS  Article  PubMed  Google Scholar 

  27. Adriano F, Caltagirone C, Spalletta G (2012) Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 18(2):180–200

    Article  PubMed  Google Scholar 

  28. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Browndyke JN, Sherwood A (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3):239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zheng G, Xia R, Zhou W, Tao J, Chen L (2016) Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 50(23):1443–1450. https://doi.org/10.1136/bjsports-2015-095699

    Article  PubMed  Google Scholar 

  30. Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, Macko R, Marquez DX, Petruzzello SJ, Powell KE, For Physical Activity Guidelines Advisory C (2019) Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc 51(6):1242–1251. https://doi.org/10.1249/MSS.0000000000001936

    Article  PubMed  PubMed Central  Google Scholar 

  31. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022. https://doi.org/10.1073/pnas.1015950108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. https://doi.org/10.1016/j.tics.2013.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hotting K, Roder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9 Pt B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005

    Article  PubMed  Google Scholar 

  34. Kandola A, Hendrikse J, Lucassen PJ, Yucel M (2016) Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment. Front Hum Neurosci 10:373. https://doi.org/10.3389/fnhum.2016.00373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Maurus I, Hasan A, Roh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P (2019) Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 269(5):499–515. https://doi.org/10.1007/s00406-019-01025-w

    Article  PubMed  Google Scholar 

  36. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104(13):5638–5643. https://doi.org/10.1073/pnas.0611721104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Muller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67(2):133–143. https://doi.org/10.1001/archgenpsychiatry.2009.193

    Article  PubMed  Google Scholar 

  38. Whiteman AS, Young DE, Budson AE, Stern CE, Schon K (2016) Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: a voxel-based morphometry study. Neuroimage 126:229–238. https://doi.org/10.1016/j.neuroimage.2015.11.049

    Article  PubMed  Google Scholar 

  39. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641. https://doi.org/10.1016/s0896-6273(02)00830-9

    CAS  Article  PubMed  Google Scholar 

  40. Firth J, Cotter J, Elliott R, French P, Yung AR (2015) A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 45(7):1343–1361. https://doi.org/10.1017/s0033291714003110

    CAS  Article  PubMed  Google Scholar 

  41. Dauwan M, Begemann MJ, Heringa SM, Sommer IE (2016) Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 42(3):588–599. https://doi.org/10.1093/schbul/sbv164

    Article  PubMed  Google Scholar 

  42. Malchow B, Reich-Erkelenz D, Oertel-Knochel V, Keller K, Hasan A, Schmitt A, Scheewe TW, Cahn W, Kahn RS, Falkai P (2013) The effects of physical exercise in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(6):451–467. https://doi.org/10.1007/s00406-013-0423-2

    Article  PubMed  Google Scholar 

  43. Falkai P, Malchow B, Schmitt A (2017) Aerobic exercise and its effects on cognition in schizophrenia. Curr Opin Psychiatry 30(3):171–175. https://doi.org/10.1097/YCO.0000000000000326

    Article  PubMed  Google Scholar 

  44. Nuechterlein KH, Ventura J, McEwen SC, Gretchen-Doorly D, Vinogradov S, Subotnik KL (2016) Enhancing cognitive training through aerobic exercise after a first schizophrenia episode: theoretical conception and pilot study. Schizophr Bull 42(Suppl 1):S44-52. https://doi.org/10.1093/schbul/sbw007

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oertel-Knochel V, Mehler P, Thiel C, Steinbrecher K, Malchow B, Tesky V, Ademmer K, Prvulovic D, Banzer W, Zopf Y, Schmitt A, Hansel F (2014) Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 264(7):589–604. https://doi.org/10.1007/s00406-014-0485-9

    Article  PubMed  Google Scholar 

  46. Su CY, Wang PW, Lin YJ, Tang TC, Liu MF, Chen MD (2016) The effects of aerobic exercise on cognition in schizophrenia: a 3-month follow-up study. Psychiatry Res 244:394–402. https://doi.org/10.1016/j.psychres.2016.08.011

    Article  PubMed  Google Scholar 

  47. Lin J, Chan SK, Lee EH, Chang WC, Tse M, Su WW, Sham P, Hui CL, Joe G, Chan CL, Khong PL, So KF, Honer WG, Chen EY (2015) Aerobic exercise and yoga improve neurocognitive function in women with early psychosis. NPJ Schizophr 1:15047. https://doi.org/10.1038/npjschz.2015.47

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kimhy D, Vakhrusheva J, Bartels MN, Armstrong HF, Ballon JS, Khan S, Chang RW, Hansen MC, Ayanruoh L, Lister A, Castren E, Smith EE, Sloan RP (2015) The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr Bull 41(4):859–868. https://doi.org/10.1093/schbul/sbv022

    Article  PubMed  PubMed Central  Google Scholar 

  49. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. https://doi.org/10.1249/mss.0b013e3180304570

    Article  PubMed  Google Scholar 

  50. Wisløff U, Ellingsen Ø, Kemi OJ (2009) High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev 37(3):139–146

    Article  PubMed  Google Scholar 

  51. Heggelund J, Nilsberg GE, Hoff J, Morken G, Helgerud J (2011) Effects of high aerobic intensity training in patients with schizophrenia: a controlled trial. Nord J Psychiatry 65(4):269–275. https://doi.org/10.3109/08039488.2011.560278

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brobakken MF, Nygard M, Guzey IC, Morken G, Reitan SK, Heggelund J, Wang E, Vedul-Kjelsaas E (2019) Aerobic interval training in standard treatment of out-patients with schizophrenia: a randomized controlled trial. Acta Psychiatr Scand 140(6):498–507. https://doi.org/10.1111/acps.13105

    CAS  Article  PubMed  Google Scholar 

  53. Martland R, Mondelli V, Gaughran F, Stubbs B (2019) Can high intensity interval training improve health outcomes among people with mental illness. A systematic review and preliminary meta-analysis of intervention studies across a range of mental illnesses. J Affect Disord. https://doi.org/10.1016/j.jad.2019.11.039

    Article  PubMed  Google Scholar 

  54. Wu MH, Lee CP, Hsu SC, Chang CM, Chen CY (2015) Effectiveness of high-intensity interval training on the mental and physical health of people with chronic schizophrenia. Neuropsychiatr Dis Treat 11:1255–1263. https://doi.org/10.2147/ndt.s81482

    Article  PubMed  PubMed Central  Google Scholar 

  55. Korman N, Armour M, Chapman J, Rosenbaum S, Kisely S, Suetani S, Firth J, Siskind D (2020) High intensity interval training (HIIT) for people with severe mental illness: a systematic review & meta-analysis of intervention studies–considering diverse approaches for mental and physical recovery. Psychiatry Res 284:112601. https://doi.org/10.1016/j.psychres.2019.112601

    Article  PubMed  Google Scholar 

  56. Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR (2016) High-intensity interval training for cognitive and mental health in adolescents. Med Sci Sports Exerc 48(10):1985–1993. https://doi.org/10.1249/mss.0000000000000993

    Article  PubMed  Google Scholar 

  57. Coetsee C, Terblanche E (2017) The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. Eur Rev Aging Phys Act 14(1):13. https://doi.org/10.1186/s11556-017-0183-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kovacevic A, Fenesi B, Paolucci E, Heisz JJ (2020) The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab 45(6):591–600. https://doi.org/10.1139/apnm-2019-0495

    Article  PubMed  Google Scholar 

  59. Etnier JL, Nowell PM, Landers DM, Sibley BA (2006) A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev 52(1):119–130

    Article  PubMed  Google Scholar 

  60. Angeraven M, Aufdemkampe G, Verhaar H, Aleman A, Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 16(3):CD005381. https://doi.org/10.1002/14651858.CD005381.pub3

    Article  Google Scholar 

  61. Oh Y, Yang S (2010) Defining exergames & exergaming. In: Proceedings of meaningful play, pp 1–17

  62. Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J (2017) The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 78:34–43. https://doi.org/10.1016/j.neubiorev.2017.04.011

    Article  PubMed  Google Scholar 

  63. Stojan R, Voelcker-Rehage C (2019) A systematic review on the cognitive benefits and neurophysiological correlates of exergaming in healthy older adults. J Clin Med 8(5):734. https://doi.org/10.3390/jcm8050734

    Article  PubMed Central  Google Scholar 

  64. Monteiro-Junior RS, Vaghetti CA, Nascimento OJ, Laks J, Deslandes AC (2016) Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons. Neural Regen Res 11(2):201–204. https://doi.org/10.4103/1673-5374.177709

    Article  PubMed  PubMed Central  Google Scholar 

  65. Staiano AE, Calvert SL (2011) Exergames for physical education courses: physical, social, and cognitive benefits. Child Dev Perspect 5(2):93–98. https://doi.org/10.1111/j.1750-8606.2011.00162.x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leutwyler H, Hubbard EM, Vinogradov S, Dowling GA (2012) Videogames to promote physical activity in older adults with schizophrenia. Games Health J 1(5):381–383. https://doi.org/10.1089/g4h.2012.0051

    Article  PubMed  PubMed Central  Google Scholar 

  67. Leutwyler H, Hubbard EM, Dowling GA (2014) Adherence to a videogame-based physical activity program for older adults with schizophrenia. Games Health J 3(4):227–233. https://doi.org/10.1089/g4h.2014.0006

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campos C, Mesquita F, Marques A, Trigueiro MJ, Orvalho V, Rocha NB (2015) Feasibility and acceptability of an exergame intervention for schizophrenia. Psychol Sport Exerc 19:50–58

    Article  Google Scholar 

  69. Leutwyler H, Hubbard E, Dowling G (2016) The impact of a videogame-based physical activity program in older adults with schizophrenia on subjectively and objectively measured physical activity. Am J Geriatr Psychiatry 24(3):S156

    Article  Google Scholar 

  70. Kimhy D, Khan S, Ayanrouh L, Chang RW, Hansen MC, Lister A, Ballon JS, Vakhrusheva J, Armstrong HF, Bartels MN, Sloan RP (2016) Use of active-play video games to enhance aerobic fitness in schizophrenia: feasibility, safety, and adherence. Psychiatr Serv 67(2):240–243. https://doi.org/10.1176/appi.ps.201400523

    Article  PubMed  Google Scholar 

  71. Leutwyler H, Hubbard E, Cooper BA, Dowling G (2018) Impact of a pilot videogame-based physical activity program on walking speed in adults with schizophrenia. Community Ment Health J 54(6):735–739. https://doi.org/10.1007/s10597-017-0208-6

    CAS  Article  PubMed  Google Scholar 

  72. Willems M, Bond T (2009) Comparison of physiological and metabolic responses to playing Nintendo Wii Sports and brisk treadmill walking. J Hum Kinet 22(2009):43–49

    Article  Google Scholar 

  73. Peng W, Lin J-H, Crouse J (2011) Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol Behav Soc Netw 14(11):681–688

    Article  PubMed  Google Scholar 

  74. Voelcker-Rehage C, Godde B, Staudinger UM (2010) Physical and motor fitness are both related to cognition in old age. Eur J Neurosci 31(1):167–176. https://doi.org/10.1111/j.1460-9568.2009.07014.x

    Article  PubMed  Google Scholar 

  75. Voelcker-Rehage C, Godde B, Staudinger UM (2011) Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci 5:26. https://doi.org/10.3389/fnhum.2011.00026

    Article  PubMed  PubMed Central  Google Scholar 

  76. Voelcker-Rehage C, Niemann C (2013) Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev 37(9 Pt B):2268–2295. https://doi.org/10.1016/j.neubiorev.2013.01.028

    Article  PubMed  Google Scholar 

  77. Niemann C, Godde B, Voelcker-Rehage C (2014a) Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci 6:170. https://doi.org/10.3389/fnagi.2014.00170

    Article  PubMed  PubMed Central  Google Scholar 

  78. Engh JA, Andersen E, Holmen TL, Martinsen EW, Mordal J, Morken G, Egeland J (2015a) Effects of high-intensity aerobic exercise on psychotic symptoms and neurocognition in outpatients with schizophrenia: study protocol for a randomized controlled trial. Trials 16(1):557

    Article  PubMed  PubMed Central  Google Scholar 

  79. Andersen E, Holmen TL, Egeland J, Martinsen EW, Bigseth TT, Bang-Kittilsen G, Anderssen SA, Hansen BH, Engh JA (2018) Physical activity pattern and cardiorespiratory fitness in individuals with schizophrenia compared with a population-based sample. Schizophr Res 201:98–104. https://doi.org/10.1016/j.schres.2018.05.038

    Article  PubMed  Google Scholar 

  80. Engh JA, Egeland J, Andreassen OA, Bang-Kittilsen G, Bigseth TT, Holmen TL, Martinsen EW, Mordal J, Andersen E (2019) Objectively assessed daily steps-not light intensity physical activity, moderate-to-vigorous physical activity and sedentary time-is associated with cardiorespiratory fitness in patients with schizophrenia. Front Psychiatry 10:82. https://doi.org/10.3389/fpsyt.2019.00082

    Article  PubMed  PubMed Central  Google Scholar 

  81. Holmen TL, Egeland J, Andersen E, Mordal J, Andreassen OA, Ueland T, Bigseth TT, Bang-Kittilsen G, Engh JA (2019) The association between cardiorespiratory fitness and cognition appears neither related to current physical activity nor mediated by brain-derived neurotrophic factor in a sample of outpatients with schizophrenia. Front Psychiatry 10:785. https://doi.org/10.3389/fpsyt.2019.00785

    Article  PubMed  PubMed Central  Google Scholar 

  82. Holmen TL, Egeland J, Andersen E, Bigseth TT, Engh JA (2018) The association between cardio-respiratory fitness and cognition in schizophrenia. Schizophr Res 193:418–422. https://doi.org/10.1016/j.schres.2017.07.015

    Article  PubMed  Google Scholar 

  83. Holmen TL, Engh JA, Andersen E, Andreassen OA, Martinsen EW, Bigseth TT, Bang-Kittilsen G, Egeland J (2019) Cardio-respiratory fitness is associated with a verbal factor across cognitive domains in schizophrenia. Schizophr Res 206:157–162. https://doi.org/10.1016/j.schres.2018.11.033

    Article  PubMed  Google Scholar 

  84. Engh JA, Andersen E, Holmen TL, Martinsen EW, Mordal J, Morken G, Egeland J (2015b) Effects of high-intensity aerobic exercise on psychotic symptoms and neurocognition in outpatients with schizophrenia: study protocol for a randomized controlled trial. Trials 16:557. https://doi.org/10.1186/s13063-015-1094-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. O’Donovan C, Hirsch E, Holohan E, McBride I, McManus R, Hussey J (2012) Energy expended playing Xbox Kinect™ and Wii™ games: a preliminary study comparing single and multiplayer modes. Physiotherapy 98(3):224–229

    Article  PubMed  Google Scholar 

  86. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276. https://doi.org/10.1093/schbul/13.2.261

    CAS  Article  PubMed  Google Scholar 

  87. Endicott J, Spitzer RL, Fleiss JL, Cohen J (1976) The Global Assessment Scale: a procedure for measuring overall severity of psychiatric disturbance. Arch Gen Psychiatry 33(6):766–771

    CAS  Article  PubMed  Google Scholar 

  88. Pedersen G, Karterud S (2012) The symptom and function dimensions of the Global Assessment of Functioning (GAF) scale. Compr Psychiatry 53(3):292–298. https://doi.org/10.1016/j.comppsych.2011.04.007

    Article  PubMed  Google Scholar 

  89. Wechsler D (2008) Wechsler adult intelligence scale–Fourth Edition (WAIS–IV), vol 22.NCS Pearson, San Antonio, TX, p 498

  90. Balke B, Ware RW (1959) An experimental study of physical fitness of Air Force personnel. U S Armed Forces Med J 10(6):675–688

    CAS  PubMed  Google Scholar 

  91. Nuechterlein KH, Green MF (2006) MCCB: matrics consensus cognitive battery. MATRICS Assessment, Los Angeles

    Google Scholar 

  92. Keefe RS, Fox KH, Harvey PD, Cucchiaro J, Siu C, Loebel A (2011) Characteristics of the MATRICS Consensus Cognitive Battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophr Res 125(2–3):161–168. https://doi.org/10.1016/j.schres.2010.09.015

    Article  PubMed  Google Scholar 

  93. Mohn C, Sundet K, Rund BR (2012) The Norwegian standardization of the MATRICS (measurement and treatment research to improve cognition in schizophrenia) consensus cognitive battery. J Clin Exp Neuropsychol 34(6):667–677. https://doi.org/10.1080/13803395.2012.667792

    Article  PubMed  Google Scholar 

  94. Holmen A, Juuhl-Langseth M, Thormodsen R, Melle I, Rund BR (2010) Neuropsychological profile in early-onset schizophrenia-spectrum disorders: measured with the MATRICS battery. Schizophr Bull 36(4):852–859. https://doi.org/10.1093/schbul/sbn174

    Article  PubMed  Google Scholar 

  95. Twisk J, Bosman L, Hoekstra T, Rijnhart J, Welten M, Heymans M (2018) Different ways to estimate treatment effects in randomised controlled trials. Contemp Clin Trials Commun 10:80–85. https://doi.org/10.1016/j.conctc.2018.03.00852

    Article  Google Scholar 

  96. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, NJ

    Google Scholar 

  97. Guimarães A, Barbosa A, Meneghini V (2018) Active videogame-based physical activity vs. aerobic exercise and cognitive performance in older adults: a randomized controlled trial. J Phys Educ Sport. https://doi.org/10.7752/jpes.2018.01026

    Article  Google Scholar 

  98. Keefe RSE, Davis VG, Harvey PD, Atkins AS, Haig GM, Hagino O, Marder S, Hilt DC, Umbricht D (2017) Placebo response and practice effects in schizophrenia cognition trials. JAMA Psychiatry 74(8):807–814. https://doi.org/10.1001/jamapsychiatry.2017.1574

    Article  PubMed  PubMed Central  Google Scholar 

  99. Georgiades A, Davis VG, Atkins AS, Khan A, Walker TW, Loebel A, Haig G, Hilt DC, Dunayevich E, Umbricht D, Sand M, Keefe RSE (2017) Psychometric characteristics of the MATRICS Consensus Cognitive Battery in a large pooled cohort of stable schizophrenia patients. Schizophr Res 190:172–179. https://doi.org/10.1016/j.schres.2017.03.040

    Article  PubMed  Google Scholar 

  100. Gray BE, McMahon RP, Green MF, Seidman LJ, Mesholam-Gately RI, Kern RS, Nuechterlein KH, Keefe RS, Gold JM (2014) Detecting reliable cognitive change in individual patients with the MATRICS Consensus Cognitive Battery. Schizophr Res 159(1):182–187. https://doi.org/10.1016/j.schres.2014.07.032

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hotting K, Reich B, Holzschneider K, Kauschke K, Schmidt T, Reer R, Braumann KM, Roder B (2012) Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychol 31(2):145–155. https://doi.org/10.1037/a0025371

    Article  PubMed  Google Scholar 

  102. Koutsandreou F, Wegner M, Niemann C, Budde H (2016) Effects of motor versus cardiovascular exercise training on children’s working memory. Med Sci Sports Exerc 48(6):1144–1152

    Article  PubMed  Google Scholar 

  103. Moreau D, Morrison AB, Conway AR (2015) An ecological approach to cognitive enhancement: complex motor training. Acta Psychol 157:44–55. https://doi.org/10.1016/j.actpsy.2015.02.007

    Article  Google Scholar 

  104. Niemann C, Godde B, Voelcker-Rehage C (2014b) Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2014.00170

    Article  PubMed  PubMed Central  Google Scholar 

  105. Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S, Ward PB (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166:230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007

    Article  PubMed  Google Scholar 

  106. Ezzati A, Katz MJ, Zammit AR, Lipton ML, Zimmerman ME, Sliwinski MJ, Lipton RB (2016) Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults. Neuropsychologia 93(Pt B):380–385. https://doi.org/10.1016/j.neuropsychologia.2016.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kern RS, Gold JM, Dickinson D, Green MF, Nuechterlein KH, Baade LE, Keefe RS, Mesholam-Gately RI, Seidman LJ, Lee C, Sugar CA, Marder SR (2011) The MCCB impairment profile for schizophrenia outpatients: results from the MATRICS psychometric and standardization study. Schizophr Res 126(1–3):124–131. https://doi.org/10.1016/j.schres.2010.11.008

    Article  PubMed  Google Scholar 

  108. Netz Y (2019) Is there a preferred mode of exercise for cognition enhancement in older age?-A narrative review. Front Med 6:57. https://doi.org/10.3389/fmed.2019.00057

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants in EPHAPS. The authors also thank Ole-Jakob Bredrup, Helge Bjune, Ellen Gurine Faervik, Jan Freddy Hovland, Camilla Lahn-Johannessen, Bjørn Einar Oscarsen and Carolina Toll.

Funding

The EPHAPS study received funding from South-Eastern Norway Regional Health Authorities (Helse Sør-Øst) (first author), Vestfold Hospital Trust, Norwegian Extra Foundation for Health and Rehabilitation through EXTRA funds, Norwegian Research network in Severe Mental Illness (NORSMI), NORMENT/KG Jebsen Centre for Psychosis Research, Torgeir Lindvik’s Trust and Civitan International.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were initiated by JE and JAE. GB-K, JE, TLH, TTB, EA, JM, and JAE contributed to data collection, preparation of the data base and to the analyses of the data and interpretation of the results. PU contributed to the analyses of the data and interpretation of the results. GB-K wrote the manuscript as first author. All authors contributed to and critically reviewed previous versions of the manuscript and approved the final version.

Corresponding author

Correspondence to Gry Bang-Kittilsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki and was approved by the Regional Committee for Medical and Health Research Ethics of Southern and Eastern Norway (file number 2014/372/REK SOER-OEST).

Consent to participate

Informed and written consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bang-Kittilsen, G., Egeland, J., Holmen, T.L. et al. High-intensity interval training and active video gaming improve neurocognition in schizophrenia: a randomized controlled trial. Eur Arch Psychiatry Clin Neurosci 271, 339–353 (2021). https://doi.org/10.1007/s00406-020-01200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01200-4

Keywords

  • Randomized controlled trial
  • Schizophrenia
  • Cognition
  • Exercise, High-intensity interval training
  • Active video gaming