Skip to main content

Advertisement

Log in

Reduced plasma Fetuin-A is a promising biomarker of depression in the elderly

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Depression affects 7% of the elderly population, and it often remains misdiagnosed or untreated. Peripheral biomarkers might aid clinicians by allowing more accurate and well-timed recognition of the disease. We sought to determine if plasma protein levels predict the severity of depressive symptomatology or distinguish patients from healthy individuals. The severity of depressive symptoms and global cognitive functioning were assessed by the Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE) in 152 elderly subjects, 76 of which with major depressive disorder (MDD). Plasma levels of 24 proteins were measured by multiplexing and analyzed as continuous predictors or dichotomized using the median value. The association between individual plasma proteins and MDD risk or depressive symptoms severity was investigated using multiple logistic and linear regressions including relevant covariates. Sensitivity analyses were performed excluding cognitively impaired individuals or non-acute patients with MDD. After adjusting for possible confounders and false discovery rate (FDR) correction, we found lower Fetuin-A levels in MDD patients vs. controls (pFDR = 1.95 × 10–6). This result was confirmed by the sensitivity and dichotomized analyses. Lower prolactin (PRL) levels predicted more severe depressive symptoms in acute MDD patients (pFDR = 0.024). Fetuin-A is a promising biomarker of MDD in the elderly as this protein was negatively associated with the disorder in our sample, regardless of the global cognitive functioning. Lower PRL levels may be a peripheral signature of impaired neuroprotective processes and serotoninergic neurotransmission in more severely depressed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. UN, World Population Prospects (2017) The 2017 Revision, Key Findings and Advance Tables, in Working Paper No. ESA/P/WP/248. United Nations, Department of Economic and Social Affairs, Population Division

  2. Lyness JM et al (2006) The relationship of medical comorbidity and depression in older, primary care patients. Psychosomatics 47(5):435–439

    PubMed  Google Scholar 

  3. Laursen TM et al (2016) Mortality and life expectancy in persons with severe unipolar depression. J Affect Disord 193:203–207

    PubMed  Google Scholar 

  4. Briggs R et al (2018) What is the prevalence of untreated depression and death ideation in older people? Data from the Irish Longitudinal Study on Aging. Int Psychogeriatr 30(9):1393–1401

    PubMed  Google Scholar 

  5. WHO (2017) Mental health of older adults. https://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults

  6. Gottfries CG (2001) Late life depression. Eur Arch Psychiatry Clin Neurosci 251(Suppl 2):II57–II61

    PubMed  Google Scholar 

  7. Taylor WD, Aizenstein HJ, Alexopoulos GS (2013) The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry 18(9):963–974

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunday L et al (2007) Age alters cerebrovascular inflammation and effects of estrogen. Am J Physiol Heart Circ Physiol 292(5):H2333–H2340

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kealy J, Greene C, Campbell M (2018) Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.06.033

    Article  PubMed  Google Scholar 

  10. Rothermundt M et al (2001) Different immune patterns in melancholic and non-melancholic major depression. Eur Arch Psychiatry Clin Neurosci 251(2):90–97

    CAS  PubMed  Google Scholar 

  11. Lamers F et al (2016) Serum proteomic profiles of depressive subtypes. Transl Psychiatry 6(7):e851

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bot M et al (2015) Serum proteomic profiling of major depressive disorder. Transl Psychiatry 5:e599

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Arnold SE et al (2012) Plasma biomarkers of depressive symptoms in older adults. Transl Psychiatry 2:e65

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36(12):2375–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Harris VK et al (2013) Cerebrospinal fluid fetuin-A is a biomarker of active multiple sclerosis. Mult Scler 19(11):1462–1472

    PubMed  Google Scholar 

  16. Chatterjee P et al (2013) Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem 288(39):28324–28330

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Druzhkova T et al (2019) Acute stress response to a cognitive task in patients with major depressive disorder: potential metabolic and proinflammatory biomarkers. Metab Brain Dis 34(2):621–629

    PubMed  Google Scholar 

  18. Jia C et al (2019) Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice. Psychoneuroendocrinology 100:96–105

    CAS  PubMed  Google Scholar 

  19. Brambilla P et al (2014) Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Transl Psychiatry 4:e406

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Benedetti F et al (2017) Higher baseline proinflammatory cytokines mark poor antidepressant response in bipolar disorder. J Clin Psychiatry 78(8):e986–e993

    PubMed  Google Scholar 

  21. Ramsey JM et al (2016) Sex differences in serum markers of major depressive disorder in the netherlands study of depression and anxiety (NESDA). PLoS ONE 11(5):e0156624

    PubMed  PubMed Central  Google Scholar 

  22. Torner L (2016) Actions of prolactin in the brain: from physiological adaptations to stress and neurogenesis to psychopathology. Front Endocrinol (Lausanne) 7:25

    Google Scholar 

  23. Nicholas L, Dawkins K, Golden RN (1998) Psychoneuroendocrinology of depression: prolactin. Psychiatr Clin N Am 21(2):341–358

    CAS  Google Scholar 

  24. Gu S et al (2018) Stress induced hormone and neuromodulator changes in menopausal depressive rats. Front Psychiatry 9:253

    PubMed  PubMed Central  Google Scholar 

  25. Ramachandran Pillai R et al (2017) Luteinizing hormone-follicle stimulating hormone ratio as biological predictor of post-partum depression. Compr Psychiatry 72:25–33

    CAS  PubMed  Google Scholar 

  26. Huerta R et al (1995) Symptoms at perimenopausal period: its association with attitudes toward sexuality, life-style, family function, and FSH levels. Psychoneuroendocrinology 20(2):135–148

    CAS  PubMed  Google Scholar 

  27. Harlow BL et al (2003) Depression and its influence on reproductive endocrine and menstrual cycle markers associated with perimenopause: the Harvard Study of Moods and Cycles. Arch Gen Psychiatry 60(1):29–36

    PubMed  Google Scholar 

  28. Carvalho AF et al (2014) Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res 59:28–37

    PubMed  Google Scholar 

  29. Lu XY (2007) The leptin hypothesis of depression: a potential link between mood disorders and obesity? Curr Opin Pharmacol 7(6):648–652

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dean J, Keshavan M (2017) The neurobiology of depression: an integrated view. Asian J Psychiatr 27:101–111

    PubMed  Google Scholar 

  31. Pasquali MA et al (2018) A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women. Eur Arch Psychiatry Clin Neurosci 268(8):771–781

    PubMed  Google Scholar 

  32. Tsai SJ (2017) Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression. Oncotarget 8(68):113258–113268

    PubMed  PubMed Central  Google Scholar 

  33. Tsai SJ et al (2008) Plasminogen activator inhibitor-1 gene is associated with major depression and antidepressant treatment response. Pharmacogenet Genom 18(10):869–875

    CAS  Google Scholar 

  34. Han C et al (2009) Study design and methods of the Ansan Geriatric Study (AGE study). BMC Neurol 9:10

    PubMed  PubMed Central  Google Scholar 

  35. Park MH et al (2006) No difference in stroke knowledge between Korean adherents to traditional and western medicine—the AGE study: an epidemiological study. BMC Public Health 6:153

    PubMed  PubMed Central  Google Scholar 

  36. Yoo S-W et al (2006) Validity of Korean version of the mini-international neuropsychiatric interview. Anxiety Mood 2:50–55

    Google Scholar 

  37. McGivney SA, Mulvihill M, Taylor B (1994) Validating the GDS depression screen in the nursing home. J Am Geriatr Soc 42(5):490–492

    CAS  PubMed  Google Scholar 

  38. Smarr KL, Keefer AL (2011) Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res (Hoboken) 63(Suppl 11):S454–S466

    Google Scholar 

  39. Mungas D et al (1996) Age and education correction of Mini-Mental State Examination for English and Spanish-speaking elderly. Neurology 46(3):700–706

    CAS  PubMed  Google Scholar 

  40. Lee JH et al (2002) Development of the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K): clinical and neuropsychological assessment batteries. J Gerontol B Psychol Sci Soc Sci 57(1):P47–53

    PubMed  Google Scholar 

  41. Creavin ST et al (2016) Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst Rev (1):CD011145

  42. Dols A et al (2015) BDNF serum levels are not related to cognitive functioning in older depressed patients and controls. Int Psychogeriatr 27(4):649–656

    PubMed  Google Scholar 

  43. Shin C et al (2019) Increased plasma complement factor H is associated with geriatric depression. Int Psychogeriatr 31(1):101–108

    PubMed  Google Scholar 

  44. Pan A et al (2008) The association of depressive symptoms with inflammatory factors and adipokines in middle-aged and older Chinese. PLoS ONE 3(1):e1392

    PubMed  PubMed Central  Google Scholar 

  45. Bremmer MA et al (2008) Inflammatory markers in late-life depression: results from a population-based study. J Affect Disord 106(3):249–255

    CAS  PubMed  Google Scholar 

  46. Montorio I, Izal M (1996) The Geriatric Depression Scale: a review of its development and utility. Int Psychogeriatr 8(1):103–112

    CAS  PubMed  Google Scholar 

  47. Eyre HA, Stuart MJ, Baune BT (2014) A phase-specific neuroimmune model of clinical depression. Prog Neuropsychopharmacol Biol Psychiatry 54:265–274

    CAS  PubMed  Google Scholar 

  48. Benjamini Y, Krieger AM, Yekutieli DJB (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3):491–507

    Google Scholar 

  49. Lebreton JP et al (1979) Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: evidence that alpha 2 HS glycoprotein is a negative acute-phase reactant. J Clin Invest 64(4):1118–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mori K, Emoto M, Inaba M (2011) Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov 5(2):124–146

    CAS  PubMed  Google Scholar 

  51. Heinen MC et al (2018) Fetuin-A protein distribution in mature inflamed and ischemic brain tissue. PLoS ONE 13(11):e0206597

    PubMed  PubMed Central  Google Scholar 

  52. Dabrowska AM et al (2015) Fetuin-A (AHSG) and its usefulness in clinical practice. Review of the literature. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(3):352–359

    PubMed  Google Scholar 

  53. Laughlin GA et al (2014) Fetuin-A, a new vascular biomarker of cognitive decline in older adults. Clin Endocrinol (Oxf) 81(1):134–140

    CAS  Google Scholar 

  54. Smith ER et al (2011) Plasma fetuin-A is associated with the severity of cognitive impairment in mild-to-moderate Alzheimer's disease. J Alzheimers Dis 24(2):327–333

    CAS  PubMed  Google Scholar 

  55. Herrmann LL, Goodwin GM, Ebmeier KP (2007) The cognitive neuropsychology of depression in the elderly. Psychol Med 37(12):1693–1702

    PubMed  Google Scholar 

  56. Melchor JP, Strickland S (2005) Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost 93(4):655–660

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chevilley A et al (2015) Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front Cell Neurosci 9:415

    PubMed  PubMed Central  Google Scholar 

  58. Gorska-Ciebiada M et al (2016) Plasma levels of thrombomodulin, plasminogen activator inhibitor-1 and fibrinogen in elderly, diabetic patients with depressive symptoms. Aging Clin Exp Res 28(5):843–851

    PubMed  Google Scholar 

  59. von Känel R et al (2001) Effects of psychological stress and psychiatric disorders on blood coagulation and fibrinolysis: a biobehavioral pathway to coronary artery disease? Psychosom Med 63(4):531–544

    Google Scholar 

  60. Fanelli G et al (2019) Reduced CXCL1/GRO chemokine plasma levels are a possible biomarker of elderly depression. J Affect Disord 249:410–417

    CAS  PubMed  Google Scholar 

  61. Swiatkowska M, Szemraj J, Cierniewski CS (2005) Induction of PAI-1 expression by tumor necrosis factor alpha in endothelial cells is mediated by its responsive element located in the 4G/5G site. FEBS J 272(22):5821–5831

    CAS  PubMed  Google Scholar 

  62. Jeon H et al (2012) Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflamm 9:149

    CAS  Google Scholar 

  63. Ajjan R et al (2007) Ethnic differences in cardiovascular risk factors in healthy Caucasian and South Asian individuals with the metabolic syndrome. J Thromb Haemost 5(4):754–760

    CAS  PubMed  Google Scholar 

  64. McCartney CR, Marshall JC (2019) Neuroendocrinology of reproduction. In: Barbieri RL, Strauss III JF (eds) Yen & Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. Elsevier

  65. Saletu B et al (1995) Double-blind, placebo-controlled, hormonal, syndromal and EEG mapping studies with transdermal oestradiol therapy in menopausal depression. Psychopharmacology 122(4):321–329

    CAS  PubMed  Google Scholar 

  66. Schmidt PJ et al (2002) Basal plasma hormone levels in depressed perimenopausal women. Psychoneuroendocrinology 27(8):907–920

    CAS  PubMed  Google Scholar 

  67. Young EA et al (2000) Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch Gen Psychiatry 57(12):1157–1162

    CAS  PubMed  Google Scholar 

  68. Freeman EW et al (2006) Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry 63(4):375–382

    CAS  PubMed  Google Scholar 

  69. Ryan J et al (2009) A prospective study of the association between endogenous hormones and depressive symptoms in postmenopausal women. Menopause 16(3):509–517

    PubMed  PubMed Central  Google Scholar 

  70. Rubin RT, Poland RE, Lesser IM (1989) Neuroendocrine aspects of primary endogenous depression VIII. Pituitary-gonadal axis activity in male patients and matched control subjects. Psychoneuroendocrinology 14(3):217–229

    CAS  PubMed  Google Scholar 

  71. Andre C et al (2018) mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain Behav Immun 70:325–334

    CAS  PubMed  Google Scholar 

  72. Lin HW et al (2009) Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor alpha increases cyclooxygenase-2 expression, PGE2 release and interferon-gamma-induced CD40 in murine microglia. J Neuroinflamm 6:7

    Google Scholar 

  73. Lee TI et al (2009) Role of ciliary neurotrophic factor in microglial phagocytosis. Neurochem Res 34(1):109–117

    CAS  PubMed  Google Scholar 

  74. Carrillo-de Sauvage MA et al (2015) The neuroprotective agent CNTF decreases neuronal metabolites in the rat striatum: an in vivo multimodal magnetic resonance imaging study. J Cereb Blood Flow Metab 35(6):917–921

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Peruga I et al (2012) Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior. Behav Brain Res 229(2):325–332

    CAS  PubMed  Google Scholar 

  76. Beumer W et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92(5):959–975

    CAS  PubMed  Google Scholar 

  77. Wang H et al (2010) Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats. J Cereb Blood Flow Metab 30(3):493–504

    PubMed  Google Scholar 

  78. Kahn MA et al (1995) CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Res 685(1–2):55–67

    CAS  PubMed  Google Scholar 

  79. Setiawan E et al (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72(3):268–275

    PubMed  PubMed Central  Google Scholar 

  80. Mechawar N, Savitz J (2016) Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 6(11):e946

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cavaillon JM (2001) Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-grand) 47(4):695–702

    CAS  Google Scholar 

  82. Wohleb ES (2016) Neuron–microglia interactions in mental health disorders: “for better, and for worse”. Front Immunol 7:544

    PubMed  PubMed Central  Google Scholar 

  83. Busse M et al (2015) Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 265(4):321–329

    PubMed  Google Scholar 

  84. Diniz BS et al (2010) Serum brain-derived neurotrophic factor level is reduced in antidepressant-free patients with late-life depression. World J Biol Psychiatry 11(3):550–555

    PubMed  Google Scholar 

  85. Shi Y et al (2010) Plasma BDNF and tPA are associated with late-onset geriatric depression. Psychiatry Clin Neurosci 64(3):249–254

    CAS  PubMed  Google Scholar 

  86. Ziegenhorn AA et al (2007) Serum neurotrophins—a study on the time course and influencing factors in a large old age sample. Neurobiol Aging 28(9):1436–1445

    CAS  PubMed  Google Scholar 

  87. Bocchio-Chiavetto L et al (2010) Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J Biol Psychiatry 11(6):763–773

    PubMed  Google Scholar 

  88. Rosenfeld RD et al (1995) Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expr Purif 6(4):465–471

    CAS  PubMed  Google Scholar 

  89. Tsuchimine S et al (2014) Preanalysis storage conditions influence the measurement of brain-derived neurotrophic factor levels in peripheral blood. Neuropsychobiology 69(2):83–88

    CAS  PubMed  Google Scholar 

  90. Corona G et al (2014) Low prolactin is associated with sexual dysfunction and psychological or metabolic disturbances in middle-aged and elderly men: the European Male Aging Study (EMAS). J Sex Med 11(1):240–253

    CAS  PubMed  Google Scholar 

  91. Prabhakar VK, Davis JR (2008) Hyperprolactinaemia. Best Pract Res Clin Obstet Gynaecol 22(2):341–353

    CAS  PubMed  Google Scholar 

  92. Urban RJ, Veldhuis JD (1991) A selective serotonin reuptake inhibitor, fluoxetine hydrochloride, modulates the pulsatile release of prolactin in postmenopausal women. Am J Obstet Gynecol 164(1 Pt 1):147–152

    CAS  PubMed  Google Scholar 

  93. Peeters F et al (2006) Diurnal mood variation in major depressive disorder. Emotion 6(3):383–391

    PubMed  Google Scholar 

  94. Leyhe T et al (2017) A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimers Dement 13(1):59–71

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (Grant Number: HC15C1405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Un Pae.

Ethics declarations

Conflict of interest

Prof. Alessandro Serretti is/has been consultant/speaker for Abbott, Abbvie, Angelini, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, and Servier. The other authors declare no potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Supplementary file2 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, G., Benedetti, F., Wang, SM. et al. Reduced plasma Fetuin-A is a promising biomarker of depression in the elderly. Eur Arch Psychiatry Clin Neurosci 270, 901–910 (2020). https://doi.org/10.1007/s00406-019-01090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-019-01090-1

Keywords

Navigation