Skip to main content
Log in

Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Finger tapping is sensitive to motor slowing and emerging symptoms in individuals at clinical high risk for psychosis (CHR). A sensitive, computerized finger tapping task would be beneficial in early psychosis screening batteries. The study included 41 CHR and 32 healthy volunteers, who completed a computerized finger tapping task and clinical interviews. This computerized finger tapping task was sensitive to slowing in the CHR group compared to healthy volunteers, and as expected negative but not positive symptoms related to motor slowing. Computerized finger tapping tasks may be an easily dispersible tool for early symptom detection battery relevant to emerging negative symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Brown S (1997) Excess mortality of schizophrenia: a meta-analysis. Br J Psychiatry 171:502–508. https://doi.org/10.1192/bjp.171.6.502

    Article  CAS  PubMed  Google Scholar 

  2. Olfson M, Gerhard T, Huang C et al (2015) Premature mortality among adults with schizophrenia in the United States. JAMA Psychiatry 72:1172–1181. https://doi.org/10.1001/jamapsychiatry.2015.1737

    Article  PubMed  Google Scholar 

  3. Cechnicki A, Cichocki Ł, Kalisz A et al (2014) Duration of untreated psychosis (DUP) and the course of schizophrenia in a 20-year follow-up study. Psychiatry Res 219:420–425. https://doi.org/10.1016/j.psychres.2014.05.046

    Article  PubMed  Google Scholar 

  4. Penttilä M, Jääskeläinen E, Hirvonen N et al (2014) Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: systematic review and meta-analysis. Br J Psychiatry 205:88–94. https://doi.org/10.1192/bjp.bp.113.127753

    Article  PubMed  Google Scholar 

  5. Gur RC, Richard J, Hughett P et al (2010) A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. J Neurosci Methods 187:254–262. https://doi.org/10.1016/j.jneumeth.2009.11.017

    Article  PubMed  Google Scholar 

  6. Gur RC, Ragland JD, Moberg PJ et al (2001) Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology 25:766–776. https://doi.org/10.1016/S0893-133X(01)00278-0

    Article  CAS  PubMed  Google Scholar 

  7. D’Reaux RA, Neumann CS, Rhymer KN (2000) Time of day of testing and neuropsychological performance of schizophrenic patients and healthy controls. Schizophr Res 45:157–167. https://doi.org/10.1016/S0920-9964(99)00196-6

    Article  PubMed  Google Scholar 

  8. Gur RC, Braff DL, Calkins ME et al (2015) Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophr Res 163:17–23. https://doi.org/10.1016/j.schres.2014.10.049

    Article  PubMed  PubMed Central  Google Scholar 

  9. Becker HE, Nieman DH, Wiltink S et al (2010) Neurocognitive functioning before and after the first psychotic episode: does psychosis result in cognitive deterioration? Psychol Med 40:1599–1606. https://doi.org/10.1017/S0033291710000048

    Article  CAS  PubMed  Google Scholar 

  10. Dean DJ, Walther S, Bernard JA, Mittal VA (2018) Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: evidence for vulnerability subtypes. Clin Psychol Sci 6:721–734. https://doi.org/10.1177/2167702618773759

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dean DJ, Mittal VA (2015) Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. NPJ Schizophr 1:14006. https://doi.org/10.1038/npjschz.2014.6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dickson H, Cullen AE, Reichenberg A et al (2014) Cognitive impairment among children at-risk for schizophrenia. J Psychiatr Res 50:92–99. https://doi.org/10.1016/j.jpsychires.2013.12.003

    Article  PubMed  Google Scholar 

  13. Dickson H, Laurens KR, Cullen AE, Hodgins S (2012) Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychol Med 42:743–755. https://doi.org/10.1017/S0033291711001693

    Article  CAS  PubMed  Google Scholar 

  14. Gschwandtner U, Pflüger M, Aston J et al (2006) Fine motor function and neuropsychological deficits in individuals at risk for schizophrenia. Eur Arch Psychiatry Clin Neurosci 256:201–206. https://doi.org/10.1007/s00406-005-0626-2

    Article  PubMed  Google Scholar 

  15. Niendam TA, Bearden CE, Zinberg J et al (2007) The course of neurocognition and social functioning in individuals at ultra high risk for psychosis. Schizophr Bull 33:772–781. https://doi.org/10.1093/schbul/sbm020

    Article  PubMed  PubMed Central  Google Scholar 

  16. Niendam TA, Bearden CE, Johnson JK et al (2006) Neurocognitive performance and functional disability in the psychosis prodrome. Schizophr Res 84:100–111. https://doi.org/10.1016/j.schres.2006.02.005

    Article  PubMed  Google Scholar 

  17. Damme KSF, Gallagher N, Vargas T et al (2019) Motor sequence learning and pattern recognition in youth at clinical high-risk for psychosis. Schizophr Res 208:454–456. https://doi.org/10.1016/j.schres.2019.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moritz CH, Haughton VM, Cordes D et al (2000) Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. Am J Neuroradiol 21:1629–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao SM, Bandettini PA, Binder JR et al (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254. https://doi.org/10.1097/00004647-199611000-00020

    Article  CAS  PubMed  Google Scholar 

  20. Witt ST, Meyerand ME, Laird AR (2008) Functional neuroimaging correlates of finger tapping task variations: an ALE meta-analysis. Neuroimage 42:343–356. https://doi.org/10.1016/j.neuroimage.2008.04.025

    Article  PubMed  Google Scholar 

  21. Bernard JA, Orr JM, Mittal VA (2017) Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage Clin 14:622–628. https://doi.org/10.1016/j.nicl.2017.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bernard JA, Mittal VA (2014) Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry. https://doi.org/10.3389/fpsyt.2014.00160

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schröder J, Essig M, Baudendistel K et al (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. NeuroImage 9:81–87. https://doi.org/10.1006/nimg.1998.0387

    Article  PubMed  Google Scholar 

  24. Walther S, Mittal VA (2017) Motor system pathology in psychosis. Curr Psychiatry Rep 19:97. https://doi.org/10.1007/s11920-017-0856-9

    Article  PubMed  Google Scholar 

  25. Mittal VA, Walker EF (2007) Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents. J Abnorm Psychol 116:796–803. https://doi.org/10.1037/0021-843X.116.4.796

    Article  PubMed  Google Scholar 

  26. Dean DJ, Kent JS, Bernard JA et al (2015) Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr Res 162:86–89. https://doi.org/10.1016/j.schres.2014.12.039

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mittal VA, Dean DJ, Bernard JA et al (2014) Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull 40:1204–1215. https://doi.org/10.1093/schbul/sbt199

    Article  PubMed  Google Scholar 

  28. Mittal VA, Hasenkamp W, Sanfilipo M et al (2007) Relation of neurological soft signs to psychiatric symptoms in schizophrenia. Schizophr Res 94:37–44. https://doi.org/10.1016/j.schres.2007.04.017

    Article  PubMed  Google Scholar 

  29. Heinz A, Knable MB, Coppola R et al (1998) Psychomotor slowing, negative symptoms and dopamine receptor availability—an IBZM SPECT study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr Res 31:19–26. https://doi.org/10.1016/S0920-9964(98)00003-6

    Article  CAS  PubMed  Google Scholar 

  30. Bermanzohn PC, Siris SG (1992) Akinesia: a syndrome common to parkinsonism, retarded depression, and negative symptoms of schizophrenia. Compr Psychiatry 33:221–232. https://doi.org/10.1016/0010-440X(92)90045-R

    Article  CAS  PubMed  Google Scholar 

  31. Bervoets C, Docx L, Sabbe B et al (2014) The nature of the relationship of psychomotor slowing with negative symptomatology in schizophrenia. Cogn Neuropsychiatry 19:36–46. https://doi.org/10.1080/13546805.2013.779578

    Article  PubMed  Google Scholar 

  32. Gibbon M, Spitzer RL, Benjamin LS, First MB (1997) Structured clinical interview for DSM-5 (SCID-5). https://www.appi.org/products/structured-clinical-interview-for-dsm-5-scid-5. Accessed 2 May 2019

  33. Miller TJ, McGlashan TH, Rosen JL et al (2003) Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull 29:703–715. https://doi.org/10.1093/oxfordjournals.schbul.a007040

    Article  PubMed  Google Scholar 

  34. Weickert TW, Goldberg TE (2005) First- and second-generation antipsychotic medication and cognitive processing in schizophrenia. Curr Psychiatry Rep 7:304–310. https://doi.org/10.1007/s11920-005-0085-5

    Article  PubMed  Google Scholar 

  35. Coleman AR, Moberg PJ, Ragland JD, Gur RC (1997) Comparison of the halstead-reitan and infrared light beam finger tappers. Assessment 4:277–286. https://doi.org/10.1177/107319119700400307

    Article  CAS  PubMed  Google Scholar 

  36. Da Silva FN, Irani F, Richard J et al (2012) More than just tapping: index finger-tapping measures procedural learning in schizophrenia. Schizophr Res 137:234–240. https://doi.org/10.1016/j.schres.2012.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24:203–218. https://doi.org/10.1093/oxfordjournals.schbul.a033321

    Article  CAS  PubMed  Google Scholar 

  38. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP (2009) Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cogn 71:345–353. https://doi.org/10.1016/j.bandc.2009.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bernard JA, Mittal VA (2015) Updating the research domain criteria: the utility of a motor dimension. Psychol Med 45:2685–2689. https://doi.org/10.1017/S0033291715000872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mittal VA, Bernard JA, Northoff G (2017) What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull 43:949–955. https://doi.org/10.1093/schbul/sbx087

    Article  PubMed  PubMed Central  Google Scholar 

  41. Keefe RSE, Perkins DO, Gu H et al (2006) A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophr Res 88:26–35. https://doi.org/10.1016/j.schres.2006.06.041

    Article  PubMed  Google Scholar 

  42. Lencz T, Smith CW, McLaughlin D et al (2006) Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biol Psychiat 59:863–871. https://doi.org/10.1016/j.biopsych.2005.09.005

    Article  PubMed  Google Scholar 

  43. Woodberry KA, McFarlane WR, Giuliano AJ et al (2013) Change in neuropsychological functioning over 1 year in youth at clinical high risk for psychosis. Schizophr Res 146:87–94. https://doi.org/10.1016/j.schres.2013.01.017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Mental Health (1R01MH112545-01, R21 MH110374, R21/R33 Award, MH103231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine S. F. Damme.

Ethics declarations

Conflict of interest

We have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damme, K.S.F., Osborne, K.J., Gold, J.M. et al. Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model. Eur Arch Psychiatry Clin Neurosci 270, 393–397 (2020). https://doi.org/10.1007/s00406-019-01059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-019-01059-0

Keywords

Navigation