Skip to main content
Log in

Nucleus accumbens activation is linked to salience in social decision making

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Aberrant salience may explain hasty decision making and psychotic symptoms in schizophrenia. In healthy individuals, final decisions in probabilistic reasoning tasks are related to Nucleus accumbens (Nacc) activation. However, research investigating the Nacc in social decision making is missing. Our study aimed at investigating the role of the Nacc for social decision making and its link to (aberrant) salience attribution. 47 healthy individuals completed a novel social jumping-to-conclusion (JTC) fMRI-paradigm, showing morphed faces simultaneously expressing fear and happiness. Participants decided on the ‘current’ emotion after each picture, and on the ‘general’ emotion of series of faces. Nacc activation was stronger during final decisions than in previous trials without a decision, particularly in fear rather than happiness series. A JTC-bias was associated with higher Nacc activation for last fearful, but not last happy faces. Apparently, mechanisms underlying probabilistic reasoning are also relevant for social decision making. The pattern of Nacc activation suggests salience, not reward, drives the final decision. Based on these findings, we hypothesize that aberrant salience might also explain social-cognitive deficits in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kohler CG, Turner TH, Bilker WB, Brensinger CM, Siegel SJ, Kanes SJ, Gur RE, Gur RC (2003) Facial emotion recognition in schizophrenia: intensity effects and error pattern. Am J Psychiatry 160:1768–1774

    Article  PubMed  Google Scholar 

  2. Kohler CG, Walker JB, Martin EA, Healey KM, Moberg PJ (2010) Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr Bull 36:1009–1019

    Article  PubMed  Google Scholar 

  3. Heerey EA, Bell-Warren KR, Gold JM (2008) Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol Psychiatry 64:62–69

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moritz S, Woodward TS (2005) Jumping to conclusions in delusional and non-delusional schizophrenic patients. Br J Clin Psychol 44:193–207

    Article  PubMed  Google Scholar 

  5. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matthews SC, Simmons AN, Lane SD, Paulus MP (2004) Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport 15:2123–2127

    Article  PubMed  Google Scholar 

  7. St Onge JR, Ahn S, Phillips AG, Floresco SB (2012) Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. J Neurosci 32:16880–16891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zalocusky KA, Ramakrishnan C, Lerner TN, Davidson TJ, Knutson B, Deisseroth K (2016) Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature 531:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F (2011) Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol 21:980–983

    Article  CAS  PubMed  Google Scholar 

  10. Rausch F, Mier D, Eifler S, Fenske S, Schirmbeck F, Englisch S, Schilling C, Meyer-Lindenberg A, Kirsch P, Zink M (2015) Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state. J Psychiatry Neurosci 40:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kringelbach ML, Berridge KC (2010) The functional neuroanatomy of pleasure and happiness. Discov Med 9:579–587

    PubMed  PubMed Central  Google Scholar 

  12. Sabatinelli D, Bradley MM, Lang PJ, Costa VD, Versace F (2007) Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. J Neurophysiol 98:1374–1379

    Article  PubMed  Google Scholar 

  13. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  CAS  PubMed  Google Scholar 

  14. Esslinger C, Braun U, Schirmbeck F, Santos A, Meyer-Lindenberg A, Zink M, Kirsch P (2013) Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task. PLoS One 8:e58536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kapur S, Mizrahi R, Li M (2005) From dopamine to salience to psychosis–linking biology, pharmacology and phenomenology of psychosis. Schizophr Res 79:59–68

    Article  PubMed  Google Scholar 

  16. Dudley R, Taylor P, Wickham S, Hutton P. Psychosis (2016) Delusions and the “jumping to conclusions” reasoning bias: a systematic review and meta-analysis. Schizophr Bull 42:652–665

    Article  PubMed  Google Scholar 

  17. Speechley WJ, Whitman JC, Woodward TS (2010) The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia. J Psychiatry Neurosci 35:7–17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blackwood NJ, Howard RJ, Bentall RP, Murray RM (2001) Cognitive neuropsychiatric models of persecutory delusions. Am J Psychiatry 158:527–539

    Article  CAS  PubMed  Google Scholar 

  19. Mier D, Kirsch P (2017) Social-cognitive deficits in schizophrenia. Curr Top Behav Neurosci 30:397–409

    Article  PubMed  Google Scholar 

  20. Mier D, Lis S, Zygrodnik K, Sauer C, Ulferts J, Gallhofer B, Kirsch P (2014) Evidence for altered amygdala activation in schizophrenia in an adaptive emotion recognition task. Psychiatry Res 221:195–203

    Article  PubMed  Google Scholar 

  21. Rausch F, Mier D, Eifler S, Esslinger C, Schilling C, Schirmbeck F, Englisch S, Meyer-Lindenberg A, Kirsch P, Zink M (2014) Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia. Schizophr Res 156:143–149

    Article  PubMed  Google Scholar 

  22. Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29:409–416

    Article  PubMed  Google Scholar 

  23. Morris RW, Vercammen A, Lenroot R, Moore L, Langton JM, Short B, Kulkarni J, Curtis J, O’Donnell M, Weickert CS, Weickert TW (2012) Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol Psychiatry 17:235 (280–239)

    Article  CAS  PubMed  Google Scholar 

  24. Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32:811–830

    Article  PubMed  Google Scholar 

  25. Ohman A (2005) The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30:953–958

    Article  PubMed  Google Scholar 

  26. Hariri AR, Tessitore A, Mattay VS, Fera F, Weinberger DR (2002) The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage 17:317–323

    Article  PubMed  Google Scholar 

  27. Glascher J, Tuscher O, Weiller C, Buchel C (2004) Elevated responses to constant facial emotions in different faces in the human amygdala: an fMRI study of facial identity and expression. BMC Neurosci 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santos A, Mier D, Kirsch P, Meyer-Lindenberg A (2011) Evidence for a general face salience signal in human amygdala. Neuroimage 54:3111–3116

    Article  PubMed  Google Scholar 

  29. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348

    Article  PubMed  Google Scholar 

  30. Izuma K, Saito DN, Sadato N (2008) Processing of social and monetary rewards in the human striatum. Neuron 58:284–294

    Article  CAS  PubMed  Google Scholar 

  31. Spreckelmeyer KN, Krach S, Kohls G, Rademacher L, Irmak A, Konrad K, Kircher T, Gründer G (2009) Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Soc Cogn Affect Neurosci 2009:nsn051

    Google Scholar 

  32. Aharon I, Etcoff N, Ariely D, Chabris CF, O’Connor E, Breiter HC (2001) Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 32:537–551

    Article  CAS  PubMed  Google Scholar 

  33. Hahn AC, Perrett DI (2014) Neural and behavioral responses to attractiveness in adult and infant faces. Neurosci Biobehav Rev 46(Pt 4):591–603

    Article  PubMed  Google Scholar 

  34. Bishop SJ, Duncan J, Lawrence AD (2004) State anxiety modulation of the amygdala response to unattended threat-related stimuli. J Neurosci 24:10364–10368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson IM, Del-Ben CM, McKie S, Richardson P, Williams SR, Elliott R, Deakin JF (2007) Citalopram modulation of neuronal responses to aversive face emotions: a functional MRI study. Neuroreport 18:1351–1355

    Article  CAS  PubMed  Google Scholar 

  36. LoBue V (2009) More than just another face in the crowd: superior detection of threatening facial expressions in children and adults. Dev Sci 12:305–313

    Article  PubMed  Google Scholar 

  37. Pinkham AE, Griffin M, Baron R, Sasson NJ, Gur RC (2010) The face in the crowd effect: anger superiority when using real faces and multiple identities. Emotion 10:141–146

    Article  PubMed  Google Scholar 

  38. Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21:676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    Article  PubMed  Google Scholar 

  40. Savla GN, Vella L, Armstrong CC, Penn DL, Twamley EW (2012) Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophrenia Bull 39:979–992

    Article  Google Scholar 

  41. Huq SF, Garety PA, Hemsley DR (1988) Probabilistic judgements in deluded and non-deluded subjects. Q J Exp Psychol A 40:801–812

    Article  CAS  PubMed  Google Scholar 

  42. Woodward TS, Munz M, LeClerc C, Lecomte T (2009) Change in delusions is associated with change in “jumping to conclusions”. Psychiatry Res 170:124–127

    Article  PubMed  Google Scholar 

  43. Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey BJ, Nelson C (2009) The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res 168:242–249

    Article  PubMed  PubMed Central  Google Scholar 

  44. Matzke B, Herpertz SC, Berger C, Fleischer M, Domes G (2014) Facial reactions during emotion recognition in borderline personality disorder: a facial electromyography study. Psychopathology 47:101–110

    Article  PubMed  Google Scholar 

  45. Raine A (1991) The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr Bull 17:555–564

    Article  CAS  PubMed  Google Scholar 

  46. Cohen S, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM (1997) Social ties and susceptibility to the common cold. JAMA 277:1940–1944

    Article  CAS  PubMed  Google Scholar 

  47. Ettinger U, Mohr C, Gooding DC, Cohen AS, Rapp A, Haenschel C, Park S (2015) Cognition and brain function in schizotypy: a selective review. Schizophr Bull 41(Suppl 2):S417–S426

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gayer-Anderson C, Morgan C (2013) Social networks, support and early psychosis: a systematic review. Epidemiol Psychiatr Sci 22:131–146

    Article  CAS  PubMed  Google Scholar 

  49. Esslinger C, Englisch S, Inta D, Rausch F, Schirmbeck F, Mier D, Kirsch P, Meyer-Lindenberg A, Zink M (2012) Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophr Res 140:114–121

    Article  PubMed  Google Scholar 

  50. Stefanis NC, Smyrnis N, Avramopoulos D, Evdokimidis I, Ntzoufras I, Stefanis CN (2004) Factorial composition of self-rated schizotypal traits among young males undergoing military training. Schizophr Bull 30:335–350

    Article  PubMed  Google Scholar 

  51. Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B, Ott U, Burkart J, Vaitl D (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 20:1086–1095

    Article  PubMed  Google Scholar 

  52. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J (2006) Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51:871–882

    Article  CAS  PubMed  Google Scholar 

  53. Kennerley SW, Walton ME, Behrens TEJ, Buckley MJ, Rushworth MFS (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9:940–947

    Article  CAS  PubMed  Google Scholar 

  54. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS, Smith SM (2004) Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 55:594–602

    Article  PubMed  Google Scholar 

  55. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  CAS  PubMed  Google Scholar 

  56. Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, McAndrews MP, Richter EO, Lozano AM (2005) Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci 25:8402–8406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  CAS  PubMed  Google Scholar 

  58. Freeman D, Garety PA, Kuipers E, Fowler D, Bebbington PE (2002) A cognitive model of persecutory delusions. Br J Clin Psychol 41:331–347

    Article  PubMed  Google Scholar 

  59. Achim AM, Maziade M, Raymond É, Olivier D, Mérette C, Roy M-A (2009) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37:811–821

    Article  PubMed  PubMed Central  Google Scholar 

  60. Frith CD, Corcoran R (1996) Exploring ‘theory of mind’ in people with schizophrenia. Psychol Med 26:521–530

    Article  CAS  PubMed  Google Scholar 

  61. Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 46:327–337

    Article  PubMed  Google Scholar 

  62. Mier D, Lis S, Neuthe K, Sauer C, Esslinger C, Gallhofer B, Kirsch P (2010) The involvement of emotion recognition in affective theory of mind. Psychophysiology 47:1028–1039

    PubMed  Google Scholar 

  63. Bitsch F, Berger P, Nagels A, Falkenberg I, Straube B (2018) The role of the right temporo-parietal junction in social decision-making. Hum Brain Mapp 39:3072–3085

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maia TV, Frank MJ (2017) An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry 81:52–66

    Article  CAS  PubMed  Google Scholar 

  65. Nielsen M, Rostrup E, Wulff S, Bak N, Lublin H, Kapur S, Glenthøj B (2012) Alterations of the brain reward system in antipsychotic naive schizophrenia patients. Biol Psychiatry 71:898–905

    Article  PubMed  Google Scholar 

  66. Juckel G, Schlagenhauf F, Koslowski M, Wüstenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29:409–416

    Article  PubMed  Google Scholar 

  67. Kirsch P, Ronshausen S, Mier D, Gallhofer B (2007) The influence of antipsychotic treatment on brain reward system reactivity in schizophrenia patients. Pharmacopsychiatry 40:196–196

    Article  CAS  Google Scholar 

  68. Kucharska-Pietura K, Mortimer A (2013) Can antipsychotics improve social cognition in patients with schizophrenia? CNS Drugs 27:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Green MF, Horan WP, Barch DM, Gold JM (2015) Effort-based decision making: a novel approach for assessing motivation in schizophrenia. Schizophr Bull 41:1035–1044

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schmidt L, Lebreton M, Cléry-Melin M-L, Daunizeau J, Pessiglione M (2012) Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol 10:e1001266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors, but was supported by the Heidelberg Academy of Sciences and Humanities. We thank Vera Eymann, Manuel Vietze and Sabine Weinschütz for their help with data acquisition.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Mier.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, S.N.L., Fenske, S.C., Kirsch, P. et al. Nucleus accumbens activation is linked to salience in social decision making. Eur Arch Psychiatry Clin Neurosci 269, 701–712 (2019). https://doi.org/10.1007/s00406-018-0947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-018-0947-6

Keywords

Navigation