Advertisement

Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study

  • Máté Baradits
  • Brigitta Kakuszi
  • Sára Bálint
  • Máté Fullajtár
  • László Mód
  • István Bitter
  • Pál Czobor
Original Paper

Abstract

Alterations of EEG gamma activity in schizophrenia have been reported during sensory and cognitive tasks, but it remains unclear whether changes are present in resting state. Our aim was to examine whether changes occur in resting state, and to delineate those brain regions where gamma activity is altered. Furthermore, we wanted to identify the associations between changes in gamma activity and psychopathological characteristics. We studied gamma activity (30–48 Hz) in 60 patients with schizophrenia and 76 healthy controls. EEGs were acquired in resting state with closed eyes using a high-density, 256-channel EEG-system. The two groups were compared in absolute power measures in the gamma frequency range. Compared to controls, in patients with schizophrenia the absolute power was significantly elevated (false discovery rate corrected p < 0.05). The alterations clustered into fronto-central and posterior brain regions, and were positively associated with the severity of psychopathology, measured by the PANSS. Changes in gamma activity can lead to disturbed coordination of large-scale brain networks. Thus, the increased gamma activity in certain brain regions that we found may result in disturbances in temporal coordination of task-free/resting-state networks in schizophrenia. Positive association of increased gamma power with psychopathology suggests that altered gamma activity provides a contribution to symptom presentation.

Keywords

Schizophrenia Gamma activity Resting state 

Notes

Funding

This study was supported by the Hungarian National Brain Research Program (KTIA_NAP_13-1-2013-0001).

Compliance with ethical standards

Conflict of interest

None of the authors declared conflict of interest with regard to the study.

References

  1. 1.
    Herculano-Houzel S, Munk MH, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19:3992–4010PubMedGoogle Scholar
  2. 2.
    Uhlhaas PJ (2013) Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 23:283–290CrossRefPubMedGoogle Scholar
  3. 3.
    White RS, Siegel SJ (2016) Cellular and circuit models of increased resting-state network gamma activity in schizophrenia. Neuroscience 321:66–76CrossRefPubMedGoogle Scholar
  4. 4.
    Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432CrossRefPubMedGoogle Scholar
  6. 6.
    Friston KJ (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 395:68–79CrossRefPubMedGoogle Scholar
  7. 7.
    Friston K, Brown HR, Siemerkus J, Stephan KE (2016) The dysconnection hypothesis (2016). Schizophr Res 176:83–94CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reichenberg A (2010) The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci 12:383–392PubMedGoogle Scholar
  9. 9.
    Basar-Eroglu C, Schmiedt-Fehr C, Mathes B, Zimmermann J, Brand A (2009) Are oscillatory brain responses generally reduced in schizophrenia during long sustained attentional processing? Int J Psychophysiol 71:75–83CrossRefPubMedGoogle Scholar
  10. 10.
    Hall MH, Taylor G, Sham P, Schulze K, Rijsdijk F, Picchioni M, Toulopoulou T, Ettinger U, Bramon E, Murray RM, Salisbury DF (2011) The early auditory gamma-band response is heritable and a putative endophenotype of schizophrenia. Schizophr Bull 37:778–787CrossRefPubMedGoogle Scholar
  11. 11.
    Hall MH, Taylor G, Salisbury DF, Levy DL (2011) Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull 37:1187–1199CrossRefPubMedGoogle Scholar
  12. 12.
    Hirano S, Hirano Y, Maekawa T, Obayashi C, Oribe N, Kuroki T, Kanba S, Onitsuka T (2008) Abnormal neural oscillatory activity to speech sounds in schizophrenia: a magnetoencephalography study. J Neurosci 28:4897–4903CrossRefPubMedGoogle Scholar
  13. 13.
    Krishnan GP, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, O’Donnell BF (2009) Steady state and induced auditory gamma deficits in schizophrenia. NeuroImage 47:1711–1719CrossRefPubMedGoogle Scholar
  14. 14.
    Lee KH, Williams LM, Haig A, Goldberg E, Gordon E (2001) An integration of 40 hz gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 112:1499–1507CrossRefPubMedGoogle Scholar
  15. 15.
    Leicht G, Kirsch V, Giegling I, Karch S, Hantschk I, Moller HJ, Pogarell O, Hegerl U, Rujescu D, Mulert C (2010) Reduced early auditory evoked gamma-band response in patients with schizophrenia. Biol Psychiatry 67:224–231CrossRefPubMedGoogle Scholar
  16. 16.
    Leicht G, Karch S, Karamatskos E, Giegling I, Moller HJ, Hegerl U, Pogarell O, Rujescu D, Mulert C (2011) Alterations of the early auditory evoked gamma-band response in first-degree relatives of patients with schizophrenia: Hints to a new intermediate phenotype. J Psychiatric Res 45:699–705CrossRefGoogle Scholar
  17. 17.
    Lenz D, Fischer S, Schadow J, Bogerts B, Herrmann CS (2011) Altered evoked gamma-band responses as a neurophysiological marker of schizophrenia? Int J Psychophysiol 79:25–31CrossRefPubMedGoogle Scholar
  18. 18.
    Roach BJ, Mathalon DH (2008) Event-related eeg time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34:907–926CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Teale P, Collins D, Maharajh K, Rojas DC, Kronberg E, Reite M (2008) Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. NeuroImage 42:1481–1489CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874CrossRefPubMedGoogle Scholar
  21. 21.
    Haig AR, Gordon E, De Pascalis V, Meares RA, Bahramali H, Harris A (2000) Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol 111:1461–1468CrossRefPubMedGoogle Scholar
  22. 22.
    Brenner CA, Krishnan GP, Vohs JL, Ahn WY, Hetrick WP, Morzorati SL, O’Donnell BF (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35:1065–1077CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Spencer KM (2008) Visual gamma oscillations in schizophrenia: implications for understanding neural circuitry abnormalities. Clin EEG Neurosci 39:65–68CrossRefPubMedGoogle Scholar
  24. 24.
    Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 103:19878–19883CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kissler J, Muller MM, Fehr T, Rockstroh B, Elbert T (2000) Meg gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin Neurophysiol 111:2079–2087CrossRefPubMedGoogle Scholar
  26. 26.
    Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS (2010) Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35:2590–2599CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Barr MS, Farzan F, Tran LC, Chen R, Fitzgerald PB, Daskalakis ZJ (2010) Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory. Schizophr Res 121:146–152CrossRefPubMedGoogle Scholar
  28. 28.
    Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C (2007) Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64:39–45CrossRefPubMedGoogle Scholar
  29. 29.
    Gonzalez-Hernandez JA, Cedeno I, Pita-Alcorta C, Galan L, Aubert E, Figueredo-Rodriguez P (2003) Induced oscillations and the distributed cortical sources during the wisconsin card sorting test performance in schizophrenic patients: New clues to neural connectivity. Int J Psychophysiol 48:11–24CrossRefPubMedGoogle Scholar
  30. 30.
    Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29:9481–9489CrossRefPubMedGoogle Scholar
  31. 31.
    Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62:1504–1518CrossRefPubMedGoogle Scholar
  32. 32.
    Kam JW, Bolbecker AR, O’Donnell BF, Hetrick WP, Brenner CA (2013) Resting state eeg power and coherence abnormalities in bipolar disorder and schizophrenia. J Psychiatric Res 47:1893–1901CrossRefGoogle Scholar
  33. 33.
    Kikuchi M, Hashimoto T, Nagasawa T, Hirosawa T, Minabe Y, Yoshimura M, Strik W, Dierks T, Koenig T (2011) Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res 130:187–194CrossRefPubMedGoogle Scholar
  34. 34.
    Hong LE, Summerfelt A, Mitchell BD, O’Donnell P, Thaker GK (2012) A shared low-frequency oscillatory rhythm abnormality in resting and sensory gating in schizophrenia. Clin Neurophysiol 123:285–292CrossRefPubMedGoogle Scholar
  35. 35.
    Mitra S, Nizamie SH, Goyal N, Tikka SK (2015) Evaluation of resting state gamma power as a response marker in schizophrenia. Psychiatry Clin Neurosci 69:630–639CrossRefPubMedGoogle Scholar
  36. 36.
    Tikka SK, Nizamie SH, Goyal N, Pradhan N, Tikka DL, Katshu MZ (2015) Evaluation of spontaneous dense array gamma oscillatory activity and minor physical anomalies as a composite neurodevelopmental endophenotype in schizophrenia. Int J dev Neurosci 40:43–51CrossRefPubMedGoogle Scholar
  37. 37.
    Tikka SK, Yadav S, Nizamie SH, Das B, Tikka DL, Goyal N (2014) Schneiderian first rank symptoms and gamma oscillatory activity in neuroleptic naive first episode schizophrenia: a 192 channel eeg study. Psychiatry Investig 11:467–475CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tikka SK, Nizamie SH, Das B, Katshu MZ, Goyal N (2013) Increased spontaneous gamma power and synchrony in schizophrenia patients having higher minor physical anomalies. Psychiatry Res 207:164–172CrossRefPubMedGoogle Scholar
  39. 39.
    Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S (2016) Task-free mri predicts individual differences in brain activity during task performance. Science 352:216–220CrossRefPubMedGoogle Scholar
  40. 40.
    Fenton GW, Fenwick PB, Dollimore J, Dunn TL, Hirsch SR (1980) Eeg spectral analysis in schizophrenia. Br J Psychiatry 136:445–455CrossRefPubMedGoogle Scholar
  41. 41.
    Giannitrapani D, Kayton L (1974) Schizophrenia and eeg spectral analysis. Electroencephalogr Clin Neurophysiol 36:377–386CrossRefPubMedGoogle Scholar
  42. 42.
    Giannitrapani D (1979) Spatial organization of the eeg in normal and schizophrenic subjects. Electromyogr Clin Neurophysiol 19:125–145PubMedGoogle Scholar
  43. 43.
    Itil TM, Saletu B, Davis S (1972) Eeg findings in chronic schizophrenics based on digital computer period analysis and analog power spectra. Biol Psychiatry 5:1–13PubMedGoogle Scholar
  44. 44.
    Itil TM, Saletu B, Davis S, Allen M (1974) Stability studies in schizophrenics and normals using computer-analyzed eeg. Biol Psychiatry 8:321–335PubMedGoogle Scholar
  45. 45.
    Rodin E, Grisell J, Gottlieb J (1968) Some electrographic differences between chronic schizophrenic patients and normal subjects. Recent Adv Biol Psychiatry 10:194–204CrossRefPubMedGoogle Scholar
  46. 46.
    Bandyopadhyaya D, Nizamie SH, Pradhan N, Bandyopadhyaya A (2011) Spontaneous gamma coherence as a possible trait marker of schizophrenia-an explorative study. Asian J Psychiatr 4:172–177CrossRefPubMedGoogle Scholar
  47. 47.
    Tikka SK, Yadav S, Nizamie SH, Das B, Goyal N, Tikka DL (2014) Sporadic and familial subgroups of schizophrenia do not differ on dense array spontaneous gamma oscillatory activity. Psychiatry Res 220:1151–1154CrossRefPubMedGoogle Scholar
  48. 48.
    Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, Weinberger DR, Coppola R (2009) Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human brain Mapp 30:3254–3264CrossRefGoogle Scholar
  49. 49.
    Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK (2014) Power spectral aspects of the default mode network in schizophrenia: an meg study. BMC Neurosci 15:104CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) Eeglab, sift, nft, bcilab, and erica: new tools for advanced eeg processing. Comput Intell Neurosci 2011:130714CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lopez-Calderon J, Luck SJ (2014) Erplab: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mognon A, Jovicich J, Bruzzone L, Buiatti M (2011) Adjust: an automatic eeg artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48:229–240CrossRefPubMedGoogle Scholar
  53. 53.
    Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S (2012) Independent eeg sources are dipolar. PloS One 7:e30135CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lund TR, Sponheim SR, Iacono WG, Clementz BA (1995) Internal consistency reliability of resting eeg power spectra in schizophrenic and normal subjects. Psychophysiology 32:66–71CrossRefPubMedGoogle Scholar
  55. 55.
    Thatcher RW, Palmero-Soler E, North DM, Biver CJ (2016) Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity. Sci Rep 6:38890CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Marder SR, Davis JM, Chouinard G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north american trials. J Clin Psychiatry 58:538–546CrossRefPubMedGoogle Scholar
  57. 57.
    Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64:663–667CrossRefPubMedGoogle Scholar
  58. 58.
    Leucht S, Samara M, Heres S, Patel MX, Woods SW, Davis JM (2014) Dose equivalents for second-generation antipsychotics: the minimum effective dose method. Schizophr Bull 40:314–326CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Derogatis LR, Rickels K, Rock AF (1976) The scl-90 and the mmpi: a step in the validation of a new self-report scale. Br J Psychiatry 128:280–289CrossRefPubMedGoogle Scholar
  60. 60.
    Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818CrossRefPubMedGoogle Scholar
  61. 61.
    Jahidin AH, Taib MN, Ali MSAM., Tahir NM, Lias S, Haron MH, Isa RM, Omar WRW, Fuad N (2013) Evaluation of brainwave sub-band spectral centroid in human intelligence. In: 2013 IEEE 9th International Colloquium on Signal Processing and Its Applications (Cspa), pp 295–298Google Scholar
  62. 62.
    Levine SZ, Rabinowitz J (2009) A population-based examination of the role of years of education, age of onset, and sex on the course of schizophrenia. Psychiatry Res 168:11–17CrossRefPubMedGoogle Scholar
  63. 63.
    Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149:890–897CrossRefPubMedGoogle Scholar
  64. 64.
    Liddle PF (1996) Functional imaging–schizophrenia. Br Med Bull 52:486–494CrossRefPubMedGoogle Scholar
  65. 65.
    Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 31:106–112CrossRefPubMedGoogle Scholar
  66. 66.
    Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M (2001) Decreased functional connectivity of eeg theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res 50:55–60CrossRefPubMedGoogle Scholar
  67. 67.
    Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817CrossRefPubMedGoogle Scholar
  68. 68.
    Malaspina D, Harkavy-Friedman J, Corcoran C, Mujica-Parodi L, Printz D, Gorman JM, Van Heertum R (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Theberge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fmri. Neurosci Lett 417:297–302CrossRefPubMedGoogle Scholar
  71. 71.
    Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional disintegration in paranoid schizophrenia using resting-state fmri. Schizophr Res 97:194–205CrossRefPubMedGoogle Scholar
  72. 72.
    Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P (2009) Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 132:2426–2436CrossRefPubMedGoogle Scholar
  73. 73.
    Salvador R, Sarro S, Gomar JJ, Ortiz-Gil J, Vila F, Capdevila A, Bullmore E, McKenna PJ, Pomarol-Clotet E (2010) Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Hum brain Mapp 31:2003–2014CrossRefPubMedGoogle Scholar
  74. 74.
    Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30CrossRefPubMedGoogle Scholar
  75. 75.
    Camchong J, MacDonald AW III, Bell C, Mueller BA, Lim KO (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37:640–650CrossRefPubMedGoogle Scholar
  76. 76.
    Andreou C, Nolte G, Leicht G, Polomac N, Hanganu-Opatz IL, Lambert M, Engel AK, Mulert C (2015) Increased resting-state gamma-band connectivity in first-episode schizophrenia. Schizophr Bull 41:930–939CrossRefPubMedGoogle Scholar
  77. 77.
    Uhlhaas PJ (2011) The adolescent brain: Implications for the understanding, pathophysiology, and treatment of schizophrenia. Schizophr Bull 37:480–483CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Perrin JS, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Sex differences in the growth of white matter during adolescence. NeuroImage 45:1055–1066CrossRefPubMedGoogle Scholar
  79. 79.
    Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106:9866–9871CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nature Rev Neurosci 11:100–113CrossRefGoogle Scholar
  81. 81.
    Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from nmda receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225CrossRefPubMedGoogle Scholar
  82. 82.
    Lally N, Mullins PG, Roberts MV, Price D, Gruber T, Haenschel C (2014) Glutamatergic correlates of gamma-band oscillatory activity during cognition: a concurrent er-mrs and eeg study. NeuroImage 85(Pt 2):823–833CrossRefPubMedGoogle Scholar
  83. 83.
    Gainetdinov RR, Mohn AR, Caron MG (2001) Genetic animal models: focus on schizophrenia. Trends Neurosci 24:527–533CrossRefPubMedGoogle Scholar
  84. 84.
    Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164:1162–1194CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Diez A, Suazo V, Casado P, Martin-Loeches M, Molina V (2014) Gamma power and cognition in patients with schizophrenia and their first-degree relatives. Neuropsychobiology 69:120–128CrossRefPubMedGoogle Scholar
  86. 86.
    Diez A, Suazo V, Casado P, Martin-Loeches M, Perea MV, Molina V (2014) Frontal gamma noise power and cognitive domains in schizophrenia. Psychiatry Res 221:104–113CrossRefPubMedGoogle Scholar
  87. 87.
    Pearlson GD, Petty RG, Ross CA, Tien AY (1996) Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology 14:1–17CrossRefPubMedGoogle Scholar
  88. 88.
    Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Máté Baradits
    • 1
  • Brigitta Kakuszi
    • 1
  • Sára Bálint
    • 1
  • Máté Fullajtár
    • 1
  • László Mód
    • 2
  • István Bitter
    • 1
  • Pál Czobor
    • 1
  1. 1.Department of Psychiatry and PsychotherapySemmelweis UniversityBudapestHungary
  2. 2.Department of PsychiatrySzent Borbála HospitalTatabányaHungary

Personalised recommendations