The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain


With the emergence of knowledge implicating the human gut microbiome in the development and regulation of several physiological systems, evidence has accumulated to suggest a role for the gut microbiome in psychiatric conditions and drug response. A complex relationship between the enteric nervous system, the gut microbiota and the central nervous system has been described which allows for the microbiota to influence and respond to a variety of behaviors and psychiatric conditions. Additionally, the use of pharmaceuticals may interact with and alter the microbiota to potentially contribute to adverse effects of the drug. The gut microbiota has been described in several psychiatric disorders including depression and anxiety, but only a few reports have discussed the role of the microbiome in schizophrenia. The following review examines the evidence surrounding the gut microbiota in behavior and psychiatric illness, the role of the microbiota in schizophrenia and the potential for antipsychotics to alter the gut microbiota and promote adverse metabolic events.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Dinan TG, Cryan JF (2016) Microbes, immunity and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharm. [Epub ahead of print]

  2. 2.

    Ipci K, Altintoprak N, Muluk NB, Senturk M, Cingi C (2016) The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Oto-rhino-l. [Epub ahead of print]

  3. 3.

    John GK, Mullin GE (2016) The gut microbiome and obesity. Curr Oncol Rep 18(7):45

    Article  PubMed  Google Scholar 

  4. 4.

    Rogers GB, Keating DJ, Young RL, Wong ML, Licino J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatr 6:738–748

    Article  Google Scholar 

  5. 5.

    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependant manner. Mol Psychiatr 18:666–673

    CAS  Article  Google Scholar 

  6. 6.

    Sudo N, Chida Y, Aiba Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Christian LM, Galley JD, Hade EM, Schoppe-Sullivan S, Dush CK, Bailey MT (2015) Gut microbiome composition is associated with temperament during early childhood. Brain Behav Immun 45:118–127

    Article  PubMed  Google Scholar 

  8. 8.

    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow JC, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Castro-Nallar E, Bendall ML, Perez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, Schroeder JR, Yolken RH, Crandall KA (2015) Composition, taxonomy and functional diversity of oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 3:e1140

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulatory of stress and neuroinflammation. Neurobiol Stress 4(4):23–33

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dinan TG, Cryan JF (2017) Gut-brain axis in 2016: brain-gut-microbiota axis mood, metabolism and behavior. Nat Rev Gastroenterol Hepatol. [Epub ahead of print]

  13. 13.

    Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. P Nutr Soc. 62:67–72

    CAS  Article  Google Scholar 

  14. 14.

    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Flierl MA, Rittirsch D, Nadeau BA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7:e47713

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M (2012) Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disorders 136:909–917

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2014) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    Article  Google Scholar 

  19. 19.

    Bercik P, Denou E, Collins J (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141

  20. 20.

    Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Desbonnet L, Garett L, Clarke G, Bienenstock J, Dinan TG (2009) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiat Res 43:164–174

    Article  Google Scholar 

  22. 22.

    Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  PubMed  Google Scholar 

  23. 23.

    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helvecticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261

    Article  PubMed  Google Scholar 

  25. 25.

    Jiang H, Ling Z, Zhang Y (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  26. 26.

    Naseribafrouei A, Hestad K, Avershina E (2014) Correlation between the human fecal microbiota and depression. Neurogastroent Motil 26:1155–1162

    CAS  Article  Google Scholar 

  27. 27.

    Al-Asmari AK, Khan MW (2014) Inflammation and schizophrenia: alterations in cytokine levels and perturbation in antioxidative defense systems. Hum Exp Toxicol 33(2):115–122

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Powell CM, Miyakawa T (2006) Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 59(12):1198–1207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Chase KA, Rosen C, Gin H, Bjorkquist O, Feiner B, Marvin R, Conrin S, Sharma RP (2015) Metabolic and inflammatory genes in schizophrenia. Psychiat Res 225(1–2):208–211

    CAS  Article  Google Scholar 

  30. 30.

    Lopetuso LR, Scaldaferri F, Franceschi F, Gasbarrini A (2014) The gastrointestinal microbiome-functional interference between stomach and intestine. Best Pract Res Cl GA 28(6):995–1002

    CAS  Article  Google Scholar 

  31. 31.

    Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, Dickerson FB, Yolken RH (2013) Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res 148(1–3):130–137

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL, Schweinfurth LA, Goga J, Khushalani S, Yolken RH (2014) Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord. doi:10.4088/PCC.13m01579

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Young SL, Taylor M, Lawrie SM (2015) A systematic review of the prevalence and management of antipsychotic adverse effects. J Psychopharmacol 29(4):353–362

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Corcurello R, Moles A (2010) Potential mechanisms of atypical antipsychotic-induced metabolic derangement: clues for understanding obesity and novel drug design. Pharmacol Therapeut. 127:210–251

    Article  Google Scholar 

  35. 35.

    Giskes K, van Lenthe F, Avendano-Pabon M, Brug J (2011) A systematic review of environmental factors and obesogenic dietary intakes among adults: are we getting closer to understanding obesogenic environments? Obes Rev 12(5):e95–e106

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Benarroch L, Kowlachuk C, Wilson V, Teo C, Guenette M, Chintoh A, Nesarajah Y, Taylor V, Selby P, Fletcher P, Remington GJ, Hahn MK (2016) Atypical antipsychotics and effects on feeding: from mice to men. Psychopharmacology 233(14):2629–2653

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Brandl EJ, Kennedy JL, Müller DJ (2014) Pharmacogenetics of antipsychotics. Can J Psychiatry 59:76–88

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lett TAP, Wallace TJM, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ (2012) Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatr 17:242–266

    CAS  Article  Google Scholar 

  39. 39.

    Goncalves P, Araujo JR, Martel F (2015) Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharm 25:1–16

    Article  Google Scholar 

  40. 40.

    Chintoh AF, Mann SW, Lam L, Giacca A, Fletcher P, Nobrega J, Remington G (2009) Insulin resistance and secretion in vivo: effects of different antipsychotics in an animal model. Schizophr Res 108:127–133

    Article  PubMed  Google Scholar 

  41. 41.

    Houseknecht KL, Robertson AS, Zavadoski W, Gibbs EM, Johnson DE, Rollema H (2007) Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 32:289–297

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Hahn MK, Wolever TM, Arenovich T, Teo C, Giacca A, Powell V, Clarke L, Fletcher P, Cohn T, McIntyre RS, Gomes S, Chintoh A, Remington GJ (2013) Acute effects of single-dose olanzapine on metabolic, endocrine, and inflammatory markers in healthy controls. J Clin Psychopharmaco 33(6):740–746

    CAS  Article  Google Scholar 

  43. 43.

    Vidarsdottir S, de Leewu van Weenen JE, Frolich M, Roelfsema F, Romjin JA, Pijl H (2009) Effects of olanzapine and haloperidol on the metabolic status of healthy men. J Clin Endocrinol Metab 95(1):118–125

  44. 44.

    Backhed F, Ding G, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. P Natl A Sci USA 101(44):15718–15723

    Article  Google Scholar 

  45. 45.

    Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K (2015) Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol 15:100

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Turnbaugh PJ, Hamady M, Yatsuneko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ruan Y, Sun J, He J, Chen F, Chen R, Chen H (2015) Effects of probiotics on glycemic control: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. doi:10.1271/journal.pone.0132121

    Google Scholar 

  48. 48.

    Davey JK, O’Mahoney SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF (2012) Gender-dependent consequences of chronic olanzapine in the rat: effect on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 221(1):155–169

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Davey KJ, Cotter PD, O’Sullivan O, Crispie F, Dinan TG, Cryan JF, O’Mahony SM (2013) Antipsychotics and the gut microbiome: olanzaoine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 3:e309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Morgan AP, Crowley JJ, Nonneman RJ, Quackenbush CR, Miller CN, Ryan AK, Bogue MA et al (2014) The antipsychotic olanzapine interacts with gut microbiome to cause weight gain in mouse. PLoS ONE 9(12):e115225

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Bahr SM, Weidemann BJ, Castro AN, Walsh JW, deLeon O, Burnett CML, Pearson NA et al (2015) Risperidone-induced weight gain is mediated through shifts in gut microbiome and suppression of energy expenditure. EBioMedicine 2(11):1725–1734

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Teesch LM, Oltman CL, Azcarate Peril MA, Kirby JR, Calarge CA (2015) Use of the second-generation antipsychotic, risperidone, and secondary weight change are associated with an altered gut microbiota in children. Transl Psychiatry 5:e652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


DJM is supported by the Canadian Institutes of Health Research (CIHR Operating Grant MOP 142192), and the Centre for Addiction and Mental Health (CAMH) Foundation (Joanne Murphy Professorship). DJM and MKH are supported by a Generation Capital Award in collaboration with the Farncombe Family Digestive Health Research Institute and the CAMH Foundation. We thank Thomas Lee for assisting in the preparation of Fig. 1.

Author information



Corresponding author

Correspondence to D. J. Müller.

Ethics declarations

Conflict of interest

These authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanji, S., Fonseka, T.M., Marshe, V.S. et al. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci 268, 3–15 (2018).

Download citation


  • Gut microbiome
  • Gut brain axis
  • Schizophrenia
  • Antipsychotic-induced weight gain