Striatal reward sensitivity predicts therapy-related neural changes in alcohol addiction

  • Alena Becker
  • Martin Fungisai Gerchen
  • Martina Kirsch
  • Sabine Hoffmann
  • Falk Kiefer
  • Peter Kirsch
Original Paper


Individual differences in reward sensitivity along with weakened executive control are characteristic for alcohol use disorder (AUD). Emerging translational models of psychotherapy propose the integration of such neurobiological risk profiles to elucidate the mechanisms underlying behavior change in order to improve intervention efficacy. The primary aim of the study was to investigate whether striatal baseline reward sensitivity can be used as a neurobiological predictor of intervention-specific changes in neural functioning during AUD therapy. Fifty-eight detoxified AUD patients were randomly assigned to either receive cue exposure training (CET + TAU, N = 40) or treatment as usual (TAU only, N = 18). Pre- and post-treatment sensitivity to reward was assessed by a functional magnetic resonance imaging monetary reward paradigm. A moderated multiple regression analysis revealed a positive relationship between striatal baseline reward sensitivity and activation changes in the superior frontal gyrus and anterior cingulate cortex (ACC) after CET + TAU in contrast to a negative relationship after TAU only. Over all subjects, a stronger signal change in the superior frontal gyrus and ACC was associated with increased self-efficacy to abstain alcohol. These results provide evidence that reward sensitivity at baseline predicts neural changes in inhibitory networks after receiving CET + TAU. Striatal reward sensitivity might be a promising neurobiological marker to inform therapeutic decisions.


Alcohol dependence Reward processing Cue exposure training Striatum Prefrontal cortex Functional magnetic resonance imaging 



The study was funded by the Deutsche Forschungsgemeinschaft (SFB 636/D6). The authors would like to thank Abdallah Abdelhadi, Katharina Boor, Silvia Gubay, Patrick Halli, Bettina Kirr, Birgül Sarun, Claudia Stief and Michael Wester-Ebbinghaus for recruiting participants and for data collection. We thank Anna M. Ehret for proofreading the manuscript.

Author contributions

FK, PK and MK were responsible for the study concept and design. AB and MK collected the data. AB, MG, SH and PK analyzed the data. AB, MG and PK assisted with interpretation and drafted the manuscript. FK and MK provided critical revision of the manuscript for important intellectual content. All authors critically reviewed content and approved the final version for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.


The study was funded by the Deutsche Forschungsgemeinschaft (SFB 636/D6).

Supplementary material

406_2017_805_MOESM1_ESM.docx (279 kb)
Supplementary material 1 (DOCX 279 kb)


  1. 1.
    Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12(11):652–669CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413CrossRefPubMedGoogle Scholar
  3. 3.
    Morgenstern J et al (2013) The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction. Psychol Addict Behav 27(2):336–350CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Feldstein Ewing SW, Chung T (2013) Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior. Psychol Addict Behav 27(2):329–335CrossRefPubMedGoogle Scholar
  5. 5.
    Etkin A et al (2005) Toward a neurobiology of psychotherapy: basic science and clinical applications. J Neuropsychiatry Clin Neurosci 17(2):145–158CrossRefPubMedGoogle Scholar
  6. 6.
    Baskin-Sommers AR, Foti D (2015) Abnormal reward functioning across substance use disorders and major depressive disorder: considering reward as a transdiagnostic mechanism. Int J Psychophysiol 98(2 Pt 2):227–239CrossRefPubMedGoogle Scholar
  7. 7.
    Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9(1):65–73CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Seo S et al (2015) Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addict Biol 20(6):1042–1055CrossRefPubMedGoogle Scholar
  9. 9.
    Knutson B et al (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159PubMedGoogle Scholar
  10. 10.
    Kirsch P et al (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 20(2):1086–1095CrossRefPubMedGoogle Scholar
  11. 11.
    Becker A et al. (2016) Striatal activation and frontostriatal connectivity during non-drug reward anticipation in alcohol dependence. Addict Biol 22:833–843. doi: 10.1111/adb.12352 CrossRefPubMedGoogle Scholar
  12. 12.
    Park SQ et al. (2010) Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci 30(22):7749–7753CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Forbes EE et al (2014) Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults. PLoS One 9(5):e94640CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97(2):155–167CrossRefPubMedGoogle Scholar
  15. 15.
    Courtney KE et al (2015) Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addict Biol 21(1):3–22. doi: 10.1111/adb.12314 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gass JT, Chandler LJ (2013) The plasticity of extinction: contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front Psychiatry 4:46CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kiefer F et al (2015) Effects of d-cycloserine on extinction of mesolimbic cue reactivity in alcoholism: a randomized placebo-controlled trial. Psychopharmacology 232(13):2353–2362CrossRefPubMedGoogle Scholar
  18. 18.
    Vollstadt-Klein S et al (2011) Effects of cue-exposure treatment on neural cue reactivity in alcohol dependence: a randomized trial. Biol Psychiatry 69(11):1060–1066CrossRefPubMedGoogle Scholar
  19. 19.
    Skinner HA, Horn JL (1984) Alcohol Dependence Scale (ADS) user’s guide. Addiction Research Foundation, Toronto, CanadaGoogle Scholar
  20. 20.
    Anton RF (2000) Obsessive-compulsive aspects of craving: development of the Obsessive Compulsive Drinking Scale. Addiction 95(Suppl 2):S211–S217PubMedGoogle Scholar
  21. 21.
    DiClemente CC et al (1994) The Alcohol Abstinence Self-Efficacy scale. J Stud Alcohol 55(2):141–148CrossRefPubMedGoogle Scholar
  22. 22.
    Mann K (2006) Qualifizierte Entzugsbehandlung von Alkoholabhängigen: ein Manual zur Pharmako-und Psychotherapie; mit 6 Tabellen und 20 Arbeitsblättern; alle Arbeitsblätter auf CD-ROM. Deutscher ÄrzteverlagGoogle Scholar
  23. 23.
    Plichta MM et al (2012) Test–retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage 60(3):1746–1758CrossRefPubMedGoogle Scholar
  24. 24.
    Power JD et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMedGoogle Scholar
  25. 25.
    Friston KJ et al (2006) A critique of functional localisers. Neuroimage 30(4):1077–1087CrossRefPubMedGoogle Scholar
  26. 26.
    Jaccard J, Turrisi R (2003) Interaction effects in multiple regression. 2nd edn. Thousand Oaks, CA, SageCrossRefGoogle Scholar
  27. 27.
    Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA 113(28):7900–7905CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Winkler AM et al (2014) Permutation inference for the general linear model. Neuroimage 92:381–397CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Swick D, Ashley V, Turken U (2008) Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci 9(1):102CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li CS et al (2006) Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J Neurosci 26(1):186–192CrossRefPubMedGoogle Scholar
  31. 31.
    Goldstein RZ et al (2009) The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 13(9):372–380CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Konova AB, Moeller SJ, Goldstein RZ (2013) Common and distinct neural targets of treatment: changing brain function in substance addiction. Neurosci Biobehav Rev 37(10 Pt 2):2806–2817CrossRefPubMedGoogle Scholar
  33. 33.
    Noone M, Dua J, Markham R (1999) Stress, cognitive factors, and coping resources as predictors of relapse in alcoholics. Addict Behav 24(5):687–693CrossRefPubMedGoogle Scholar
  34. 34.
    Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33(1):56–72CrossRefPubMedGoogle Scholar
  35. 35.
    Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–584CrossRefPubMedGoogle Scholar
  36. 36.
    Hopko DR et al (2003) Contemporary behavioral activation treatments for depression: procedures, principles, and progress. Clin Psychol Rev 23(5):699–717CrossRefPubMedGoogle Scholar
  37. 37.
    Aguinis H (1995) Statistical power with moderated multiple regression in management research. J Manag 21(6):1141–1158Google Scholar
  38. 38.
    Lieberman MD, Cunningham WA (2009) Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4(4):423–428CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Loeber S et al (2006) Cue exposure in the treatment of alcohol dependence: effects on drinking outcome, craving and self-efficacy. Br J Clin Psychol 45(Pt 4):515–529CrossRefPubMedGoogle Scholar
  40. 40.
    Buhler M et al (2010) Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry 67(8):745–752CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Clinical PsychologyCentral Institute of Mental Health, Medical Faculty Mannheim/ Heidelberg UniversityMannheimGermany
  2. 2.Department of Addiction Behavior and Addiction MedicineCentral Institute of Mental Health, Medical Faculty Mannheim/ Heidelberg UniversityMannheimGermany

Personalised recommendations