Skip to main content
Log in

Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35:848–870

    Article  CAS  PubMed  Google Scholar 

  3. Molteni R, Calabrese F, Racagni G, Fumagalli F, Riva MA (2009) Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol Ther 124:74–85

    Article  CAS  PubMed  Google Scholar 

  4. Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on nmda receptor antagonism. Pharmacol Ther 128:419–432

    Article  CAS  PubMed  Google Scholar 

  5. Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C (2008) Models of schizophrenia in humans and animals based on inhibition of nmda receptors. Neurosci Biobehav Rev 32:1014–1023

    Article  CAS  PubMed  Google Scholar 

  6. du Bois TM, Deng C, Han M, Newell KA, Huang XF (2009) Excitatory and inhibitory neurotransmission is chronically altered following perinatal nmda receptor blockade. Eur Neuropsychopharmacol 19:256–265

    Article  PubMed  Google Scholar 

  7. Lewis DA, Gonzalez-Burgos G (2006) Pathophysiologically based treatment interventions in schizophrenia. Nat Med 12:1016–1022

    Article  CAS  PubMed  Google Scholar 

  8. Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376

    Article  PubMed  Google Scholar 

  9. Homayoun H, Moghaddam B (2007) Nmda receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35:57–67

    Article  CAS  PubMed  Google Scholar 

  11. Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  CAS  PubMed  Google Scholar 

  12. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed  Google Scholar 

  14. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate ca1 pyramidal cell function. J Neurosci 21:5925–5934

    CAS  PubMed  Google Scholar 

  15. Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, Calabresi P (2001) Metabotropic glutamate receptor 5 mediates the potentiation of n-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 106:579–587

    Article  CAS  PubMed  Google Scholar 

  16. Perroy J, Raynaud F, Homburger V, Rousset MC, Telley L, Bockaert J, Fagni L (2008) Direct interaction enables cross-talk between ionotropic and group i metabotropic glutamate receptors. J Biol Chem 283:6799–6805

    Article  CAS  PubMed  Google Scholar 

  17. Brody SA, Dulawa SC, Conquet F, Geyer MA (2004) Assessment of a prepulse inhibition deficit in a mutant mouse lacking mglu5 receptors. Mol Psychiatry 9:35–41

    Article  CAS  PubMed  Google Scholar 

  18. Brody SA, Conquet F, Geyer MA (2004) Effect of antipsychotic treatment on the prepulse inhibition deficit of mglur5 knockout mice. Psychopharmacology 172:187–195

    Article  CAS  PubMed  Google Scholar 

  19. Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with n-methyl-d-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45–60

    Article  CAS  PubMed  Google Scholar 

  20. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  21. Lipina T, Weiss K, Roder J (2007) The ampakine cx546 restores the prepulse inhibition and latent inhibition deficits in mglur5-deficient mice. Neuropsychopharmacology 32:745–756

    Article  CAS  PubMed  Google Scholar 

  22. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced ca1 long-term potentiation (ltp) but normal ca3 ltp. J Neurosci 17:5196–5205

    CAS  PubMed  Google Scholar 

  23. Wijetunge LS, Till SM, Gillingwater TH, Ingham CA, Kind PC (2008) Mglur5 regulates glutamate-dependent development of the mouse somatosensory cortex. J Neurosci 28:13028–13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W, Wojtowicz JM, Roder J (1998) Selective abolition of the nmda component of long-term potentiation in mice lacking mglur5. Learn Mem 5:331–343

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243–6250

    Article  CAS  PubMed  Google Scholar 

  26. Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P (2010) Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 34:285–294

    Article  CAS  PubMed  Google Scholar 

  27. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95:3221–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62:1584–1597

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto T, Arion D, Unger T, Maldonado-Aviles JG, Morris HM, Volk DW, Mirnics K, Lewis DA (2008) Alterations in gaba-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol psychiatry 13:147–161

    Article  CAS  PubMed  Google Scholar 

  31. Kawaguchi Y, Kubota Y (1997) Gabaergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  CAS  PubMed  Google Scholar 

  32. Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical gabaergic neurons. Dev Neurobiol 71:45–61

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    Article  CAS  PubMed  Google Scholar 

  34. Kotecha SA, MacDonald JF (2003) Signaling molecules and receptor transduction cascades that regulate nmda receptor-mediated synaptic transmission. Int Rev Neurobiol 54:51–106

    Article  CAS  PubMed  Google Scholar 

  35. Coyle JT, Tsai G, Goff D (2003) Converging evidence of nmda receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 1003:318–327

    Article  CAS  PubMed  Google Scholar 

  36. Gordon JA (2010) Testing the glutamate hypothesis of schizophrenia. Nat Neurosci 13:2–4

    Article  CAS  PubMed  Google Scholar 

  37. Kantrowitz JT, Javitt DC (2010) N-methyl-d-aspartate (nmda) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 83:108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31:288–294

    Article  CAS  PubMed  Google Scholar 

  39. Corti C, Xuereb JH, Crepaldi L, Corsi M, Michielin F, Ferraguti F (2011) Altered levels of glutamatergic receptors and Na+/k+ atpase-alpha1 in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 128:7–14

    Article  PubMed  Google Scholar 

  40. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  41. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated gabaergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014

    Article  CAS  PubMed  Google Scholar 

  42. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase67 (gad67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  43. Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E (2001) Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 98:3477–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campo CG, Sinagra M, Verrier D, Manzoni OJ, Chavis P (2009) Reelin secreted by gabaergic neurons regulates glutamate receptor homeostasis. PLoS One 4:e5505

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gonzalez-Burgos G, Fish KN, Lewis DA (2011) Gaba neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast 2011:723184

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  47. Keefe RS, Fenton WS (2007) How should dsm-v criteria for schizophrenia include cognitive impairment? Schizophr Bull 33:912–920

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barnes SA, Pinto-Duarte A, Kappe A, Zembrzycki A, Metzler A, Mukamel EA, Lucero J, Wang X, Sejnowski TJ, Markou A, Behrens MM (2015) Disruption of mglur5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol psychiatry 20:1161–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pietraszek M, Nagel J, Gravius A, Schafer D, Danysz W (2007) The role of group i metabotropic glutamate receptors in schizophrenia. Amino Acids 32:173–178

    Article  CAS  PubMed  Google Scholar 

  50. Olney JW, Farber NB (1995) Nmda antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13:335–345

    Article  CAS  PubMed  Google Scholar 

  51. Tamminga CA (1998) Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12:21–36

    Article  CAS  PubMed  Google Scholar 

  52. Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced nmda receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  CAS  PubMed  Google Scholar 

  53. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K (2010) Postnatal nmda receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83

    Article  CAS  PubMed  Google Scholar 

  54. Sprengel R (2006) Role of ampa receptors in synaptic plasticity. Cell Tissue Res 326:447–455

    Article  CAS  PubMed  Google Scholar 

  55. Kopec CD, Real E, Kessels HW, Malinow R (2007) Glur1 links structural and functional plasticity at excitatory synapses. J Neurosci 27:13706–13718

    Article  CAS  PubMed  Google Scholar 

  56. Inta D, Vogt MA, Elkin H, Weber T, Lima-Ojeda JM, Schneider M, Luoni A, Riva MA, Gertz K, Hellmann-Regen J, Kronenberg G, Meyer-Lindenberg A, Sprengel R, Gass P (2014) Phenotype of mice with inducible ablation of glua1 ampa receptors during late adolescence: relevance for mental disorders. Hippocampus 24:424–435

    Article  CAS  PubMed  Google Scholar 

  57. Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM, Hefner K, Sprengel R, Celikel T, Daws LC, Holmes A (2008) Mice lacking the ampa glur1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol psychiatry 13:631–640

    Article  CAS  PubMed  Google Scholar 

  58. Bertani M, Lasalvia A, Bonetto C, Tosato S, Cristofalo D, Bissoli S, De Santi K, Mazzoncini R, Lazzarotto L, Santi M, Sale A, Scalabrin D, Abate M, Tansella M, Rugger M (2012) The influence of gender on clinical and social characteristics of patients at psychosis onset: a report from the Psychosis Incident Cohort Outcome Study (PICOS). Psychol Med 42:769–780

    Article  CAS  PubMed  Google Scholar 

  59. Matta JA, Ashby MC, Sanz-Clemente A, Roche KW, Isaac JT (2011) Mglur5 and nmda receptors drive the experience- and activity-dependent nmda receptor nr2b to nr2a subunit switch. Neuron 70:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sullivan EM, O’Donnell P (2012) Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophr Bull 38:373–376

    Article  PubMed  PubMed Central  Google Scholar 

  61. Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S, Baker C, Eichler EE, Korvatska O, Roche KW, Horwitz MS, Tsuang DW (2013) Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 70:582–590

    Article  CAS  PubMed  Google Scholar 

  62. Matosin N, Fernandez-Enright F, Fung SJ, Lum JS, Engel M, Andrews JL, Huang XF, Weickert CS, Newell KA (2015) Alterations of mGluR5 and its endogenous regulators Norbin, Tamalin and Preso1 in schizophrenia: towards a model of mGluR5 dysregulation. Acta Neuropathol 30:119–129

    Article  Google Scholar 

  63. Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A (2014) The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 12:219–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia RA, Vasudevan K, Buonanno A (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA 97:3596–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824–828

    Article  CAS  PubMed  Google Scholar 

  66. Conn PJ, Lindsley CW, Jones CK (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 30:25–31

    Article  CAS  PubMed  Google Scholar 

  67. Balu DT, Li Y, Takagi S, Presti KT, Ramikie TS, Rook JM, Jones CK, Lindsley CW, Conn PJ, Bolshakov VY, Coyle JT (2016) An mglu5-positive allosteric modulator rescues the neuroplasticity deficits in a genetic model of nmda receptor hypofunction in schizophrenia. Neuropsychopharmacology 41:2052–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Inta D, Vogt MA, Luoni A, Filipovic D, Lima-Ojeda JM, Pfeiffer N, Gasparini F, Riva MA, Gass P (2013) Significant increase in anxiety during aging in mglu5 receptor knockout mice. Behav Brain Res 241:27–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (IN-168/3-1) to D.I. and P.G. and by Ministry of Health, Italy—Ricerca Sanitaria Finalizzata, GET UP Project Code H61J08000200001 to P.B., M.R. and M.A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragos Inta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luoni, A., Gass, P., Brambilla, P. et al. Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors. Eur Arch Psychiatry Clin Neurosci 268, 77–87 (2018). https://doi.org/10.1007/s00406-016-0728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0728-z

Keywords

Navigation