Skip to main content
Log in

Instability of visual error processing for sensorimotor adaptation in schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Saccadic adaptation can be used to study disturbances of sensory processing and motor learning. We investigated whether patients with schizophrenia can adjust saccadic amplitudes to account for an increase in visual error while the saccade is in flight, and whether they transfer this change to a visuo-manual localization task. Fourteen patients (mean 37.1 years) and 14 healthy controls (mean 35.1 years) performed 200 adaptation trials of 10° with target shifts of 4° in the outward direction. We determined the percent amplitude change during adaptation and adaptation speed. In addition, subjects localized a stimulus that was flashed 50 ms after saccade target onset to measure the transfer of change in visual space perception to visuo-manual coordination. Eye movements were recorded at 1000 Hz. Saccade amplitudes increased over adaptation trials by 11 % (p < 0.001) similarly in both groups. Amplitude variability during adaptation was higher in patients (1.06° ± 0.32°) than in controls (0.71° ± 0.14°; p = 0.001), while adaptation speed was slower in patients (0.02 ± 0.03) than in controls (0.11 ± 0.11; p = 0.01). Other pre- and post-adaptation saccade metrics did not differ between groups. The adaptation process shifted localization of the flashed target in the adaptation direction similarly in both groups. The use of error signals for the internal recalibration of sensorimotor systems and the transfer of this recalibration to visual space perception appear basically unimpaired in schizophrenia. Higher amplitude variability in patients suggests a certain instability of saccadic control in cerebellar systems. Patients seem to rely on visual error processing in frontal circuitry, resulting in slower adaptation speeds, despite unimpaired adaptation strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37(20):464–476

    Article  Google Scholar 

  2. Noto CT, Robinson FR (2001) Visual error is the stimulus for saccade gain adaptation. Brain Res Cogn Brain Res 12(2):301–305

    Article  CAS  PubMed  Google Scholar 

  3. McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68(3):255–270. doi:10.1016/j.bandc.2008.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  4. Johnston K, Everling S (2008) Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 68(3):271–283. doi:10.1016/j.bandc.2008.08.017

    Article  PubMed  Google Scholar 

  5. Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17(1):17–25

    Article  PubMed  Google Scholar 

  6. Wurtz RH, Sommer MA (2004) Identifying corollary discharges for movement in the primate brain. Progress Brain Res 144:47–60. doi:10.1016/S0079-6123(03)14403-2

    Article  Google Scholar 

  7. Zimmermann E, Lappe M (2016) Visual space constructed by saccade motor maps. Front Hum Neurosci. doi:10.3389/fnhum.2016.00225

    Google Scholar 

  8. Gooding DC, Basso MA (2008) The tell-tale tasks: a review of saccadic research in psychiatric patient populations. Brain Cogn 68(3):371–390. doi:10.1016/j.bandc.2008.08.024

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reilly JL, Lencer R, Bishop JR, Keedy S, Sweeney JA (2008) Pharmacological treatment effects on eye movement control. Brain Cogn 68(3):415–435. doi:10.1016/j.bandc.2008.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  10. McLaughlin SC (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2(8):359–362

    Article  Google Scholar 

  11. Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80(5):2405–2416

    CAS  PubMed  Google Scholar 

  12. Collins T, Wallman J (2012) The relative importance of retinal error and prediction in saccadic adaptation. J Neurophysiol 107(12):3342–3348. doi:10.1152/jn.00746.2011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Panouilleres M, Weiss T, Urquizar C, Salemme R, Munoz DP, Pelisson D (2009) Behavioral evidence of separate adaptation mechanisms controlling saccade amplitude lengthening and shortening. J Neurophysiol 101(3):1550–1559. doi:10.1152/jn.90988.2008

    Article  PubMed  Google Scholar 

  14. Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72(1):27–53. doi:10.1016/j.pneurobio.2003.12.002

    Article  PubMed  Google Scholar 

  15. Gerardin P, Miquee A, Urquizar C, Pelisson D (2012) Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades. Neuroimage 61(4):1100–1112. doi:10.1016/j.neuroimage.2012.03.037

    Article  PubMed  Google Scholar 

  16. Panouilleres M, Habchi O, Gerardin P, Salemme R, Urquizar C, Farne A, Pelisson D (2014) A role for the parietal cortex in sensorimotor adaptation of saccades. Cereb Cortex 24(2):304–314. doi:10.1093/cercor/bhs312

    Article  PubMed  Google Scholar 

  17. Picard HJ, Amado I, Bourdel MC, Landgraf S, Olie JP, Krebs MO (2009) Correlates between neurological soft signs and saccadic parameters in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33(4):676–681. doi:10.1016/j.pnpbp.2009.03.012

    Article  PubMed  Google Scholar 

  18. Coesmans M, Roder CH, Smit AE, Koekkoek SK, De Zeeuw CI, Frens MA, van der Geest JN (2014) Cerebellar motor learning deficits in medicated and medication-free men with recent-onset schizophrenia. J Psychiatry Neurosci 39(1):E3–11. doi:10.1503/jpn.120205

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24(2):203–218

    Article  CAS  PubMed  Google Scholar 

  20. Picard H, Amado I, Mouchet-Mages S, Olie JP, Krebs MO (2008) The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull 34(1):155–172. doi:10.1093/schbul/sbm049

    Article  PubMed  Google Scholar 

  21. Zimmermann E, Lappe M (2010) Motor signals in visual localization. J Vis 10(6):2. doi:10.1167/10.6.2

    Article  PubMed  Google Scholar 

  22. Collins T, Dore-Mazars K, Lappe M (2007) Motor space structures perceptual space: evidence from human saccadic adaptation. Brain Res 1172:32–39. doi:10.1016/j.brainres.2007.07.040

    Article  CAS  PubMed  Google Scholar 

  23. Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12(12):466–473. doi:10.1016/j.tics.2008.09.003

    Article  PubMed  Google Scholar 

  24. Awater H, Burr D, Lappe M, Morrone MC, Goldberg ME (2005) Effect of saccadic adaptation on localization of visual targets. J Neurophysiol 93(6):3605–3614. doi:10.1152/jn.01013.2004

    PubMed  Google Scholar 

  25. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington

    Google Scholar 

  26. First MB, Spitzer RL, Gibbon M, Williams JBW (1995) Structured clinical interview for DSM-IV Axis I disorders, patient edition (SCID-P). New York State Psychiatric Institute, New York

    Google Scholar 

  27. Lehrl S (2005) Manual zum MWT-B. Spitta Verlag, Balingen

    Google Scholar 

  28. Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC (2010) Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 67(3):255–262. doi:10.1016/j.biopsych.2009.08.040

    Article  CAS  PubMed  Google Scholar 

  29. Thakkar KN, Schall JD, Heckers S, Park S (2015) Disrupted saccadic corollary discharge in schizophrenia. J Neurosci 35(27):9935–9945. doi:10.1523/JNEUROSCI.0473-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zimmermann E, Ostendorf F, Ploner CJ, Lappe M (2015) Impairment of saccade adaptation in a patient with a focal thalamic lesion. J Neurophysiol 113(7):2351–2359. doi:10.1152/jn.00744.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filippopulos F, Eggert T, Straube A (2013) Deficits of cortical oculomotor mechanisms in cerebellar atrophy patients. Exp Brain Res 224(4):541–550. doi:10.1007/s00221-012-3332-0

    Article  CAS  PubMed  Google Scholar 

  32. Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N, Millist L, White O (2008) Inhibitory control and spatial working memory: a saccadic eye movement study of negative symptoms in schizophrenia. Psychiatry Res 157(1–3):9–19. doi:10.1016/j.psychres.2007.02.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all patients and healthy controls for their willingness to participate in this neurophysiological study. We thank Sebastian Arnold for his assistance in recruitment procedures and data assessment and Hugh Riddell for critical editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekka Lencer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lencer, R., Meermeier, A., Silling, K. et al. Instability of visual error processing for sensorimotor adaptation in schizophrenia. Eur Arch Psychiatry Clin Neurosci 267, 237–244 (2017). https://doi.org/10.1007/s00406-016-0716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0716-3

Keywords

Navigation