Skip to main content
Log in

The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Symptom improvement in depression due to antidepressant treatment is highly variable and clinically unpredictable. Linking neuronal connectivity and genetic risk factors in predicting antidepressant response has clinical implications. Our investigation assessed whether indices of white matter integrity, serotonin transporter-linked polymorphism (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) val66met polymorphism predicted magnitude of depression symptom change following antidepressant treatment. Fractional anisotropy (FA) was used as an indicator of white matter integrity and was assessed in the uncinate fasciculus and superior longitudinal fasciculus using tract-based spatial statistics (TBSS) and probabilistic tractography. Forty-six medication-free patients with major depressive disorder participated in a diffusion tensor imaging scan prior to completing an 8-week treatment regime with citalopram or quetiapine XR. Indexed improvements in Hamilton Depression Rating Scale score from baseline to 8-week endpoint were used as an indicator of depression improvement. Carriers of the BDNF met allele exhibited lower FA values in the left uncinate fasciculus relative to val/val individuals [F(1, 40) = 7.314, p = 0.009]. Probabilistic tractography identified that higher FA in the left uncinate fasciculus predicted percent change in depression severity, with BDNF moderating this association [F(3, 30) = 3.923, p = 0.018]. An interaction between FA in the right uncinate fasciculus and 5-HTTLPR also predicted percent change in depression severity [F(5, 25) = 5.315, p = 0.002]. Uncorrected TBSS results revealed significantly higher FA in hippocampal portions of the cingulum bundle in responders compared to non-responders (p = 0.016). The predictive value of prefrontal and amygdala/hippocampal WM connectivity on antidepressant treatment response may be influenced by 5-HTTLPR and BDNF polymorphisms in MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207

    Article  PubMed  Google Scholar 

  2. Delaveau P, Jabourian M, Lemogne C et al (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130:66–74. doi:10.1016/j.jad.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  3. Mayberg HS, Brannan SK, Tekell JL et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    Article  CAS  PubMed  Google Scholar 

  4. Lamar M, Charlton RA, Ajilore O et al (2013) Prefrontal vulnerabilities and whole brain connectivity in aging and depression. Neuropsychologia 51:1463–1470. doi:10.1016/j.neuropsychologia.2013.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seminowicz DA, Mayberg HS, McIntosh AR et al (2004) Limbic–frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22:409–418. doi:10.1016/j.neuroimage.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  6. Gong Q, Wu Q, Scarpazza C et al (2011) Prognostic prediction of therapeutic response in depression using high-field MR imaging. Neuroimage 55:1497–1503. doi:10.1016/j.neuroimage.2010.11.079

    Article  PubMed  Google Scholar 

  7. Cullen KR, Klimes-Dougan B, Muetzel R et al (2010) Altered white matter microstructure in adolescents with major depression: a preliminary study. J Am Acad Child Adolesc Psychiatry 49(173–83):e1

    Google Scholar 

  8. Zuo N, Fang J, Lv X et al (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS One 7:e37561. doi:10.1371/journal.pone.0037561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy ML, Frodl T (2011) Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood Anxiety Disord 1:3. doi:10.1186/2045-5380-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dalby RB, Frandsen J, Chakravarty MM et al (2010) Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 184:38–48. doi:10.1016/j.pscychresns.2010.06.008

    Article  PubMed  Google Scholar 

  11. Alexopoulos GS, Murphy CF, Gunning-Dixon FM et al (2008) Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry 165:238–244. doi:10.1176/appi.ajp.2007.07050744

    Article  PubMed  Google Scholar 

  12. Alexopoulos GS, Kiosses DN, Choi SJ et al (2002) Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. Am J Psychiatry 159:1929–1932

    Article  PubMed  Google Scholar 

  13. Delorenzo C, Delaparte L, Thapa-Chhetry B et al (2013) Prediction of selective serotonin reuptake inhibitor response using diffusion-weighted MRI. Front Psychiatry 4:5. doi:10.3389/fpsyt.2013.00005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol (Oxford) 12:115–121

    Article  CAS  Google Scholar 

  15. Hu X, Oroszi G, Chun J et al (2005) An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 29:8–16

    Article  CAS  PubMed  Google Scholar 

  16. Smeraldi E, Zanardi R, Benedetti F et al (1998) Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 3:508–511

    Article  CAS  PubMed  Google Scholar 

  17. Kraft JB, Peters EJ, Slager SL et al (2007) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 61:734–742. doi:10.1016/j.biopsych.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida K, Ito K, Sato K et al (2002) Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 26:383–386

    Article  CAS  PubMed  Google Scholar 

  19. Serretti A, Kato M, De Ronchi D, Kinoshita T (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 12:247–257. doi:10.1038/sj.mp.4001926

    CAS  PubMed  Google Scholar 

  20. Yu YW-Y, Tsai S-J, Chen T-J et al (2002) Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 7:1115–1119. doi:10.1038/sj.mp.4001141

    Article  CAS  PubMed  Google Scholar 

  21. Sahraian S, Babashams M, Reza-Soltani P et al (2013) Serotonin transporter polymorphism (5-HTTLPR) and citalopram effectiveness in Iranian patients with major depressive disorder. Iran J Psychiatry 8:86–91

    PubMed  PubMed Central  Google Scholar 

  22. Pacheco J, Beevers CG, Benavides C et al (2009) Frontal–limbic white matter pathway associations with the serotonin transporter gene promoter region (5-HTTLPR) polymorphism. J Neurosci 29:6229–6233. doi:10.1523/JNEUROSCI.0896-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu B, Martinowich K (2008) Cell biology of BDNF and its relevance to schizophrenia. Novartis Found Symp 289:119–129 discussion 129–135–193–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aydemir C, Yalcin ES, Aksaray S et al (2006) Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry 30:1256–1260. doi:10.1016/j.pnpbp.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  25. Brunoni AR, Lopes M, Fregni F (2008) A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 11:1169–1180. doi:10.1017/S1461145708009309

    Article  CAS  PubMed  Google Scholar 

  26. Frodl T, Schüle C, Schmitt G et al (2007) Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatry 64:410–416. doi:10.1001/archpsyc.64.4.410

    Article  CAS  PubMed  Google Scholar 

  27. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  28. Choi M-J, Kang R-H, Lim S-W et al (2006) Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 1118:176–182. doi:10.1016/j.brainres.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  29. Domschke K, Lawford B, Laje G et al (2010) Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Int J Neuropsychopharmacol 13:93–101. doi:10.1017/S1461145709000030

    Article  CAS  PubMed  Google Scholar 

  30. Tsai S-J, Cheng C-Y, Yu YW-Y et al (2003) Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 123B:19–22. doi:10.1002/ajmg.b.20026

    Article  PubMed  Google Scholar 

  31. Chiang M-C, Barysheva M, Toga AW et al (2011) BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage 55:448–454. doi:10.1016/j.neuroimage.2010.12.053

    Article  CAS  PubMed  Google Scholar 

  32. Tost H, Alam T, Geramita M et al (2013) Effects of the BDNF Val66Met polymorphism on white matter microstructure in healthy adults. Neuropsychopharmacology 38:525–532. doi:10.1038/npp.2012.214

    Article  CAS  PubMed  Google Scholar 

  33. Carballedo A, Amico F, Ugwu I et al (2012) Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met-allele of the Val66Met brain-derived neurotrophic factor genotype. Am J Med Genet B Neuropsychiatr Genet 159B:537–548. doi:10.1002/ajmg.b.32060

    Article  CAS  PubMed  Google Scholar 

  34. Hyttel J, Arnt J, Sanchez C (1995) The pharmacology of citalopram. Rev Contemp Pharmacother 6:271–285

    CAS  Google Scholar 

  35. Stahl SM (2000) Placebo-controlled comparison of the selective serotonin reuptake inhibitors citalopram and sertraline. Biol Psychiatry 48:894–901

    Article  CAS  PubMed  Google Scholar 

  36. Baune BT (2008) New developments in the management of major depressive disorder and generalized anxiety disorder: role of quetiapine. Neuropsychiatr Dis Treat 4:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weisler R, Joyce M, McGill L et al (2009) Extended release quetiapine fumarate monotherapy for major depressive disorder: results of a double-blind, randomized, placebo-controlled study. CNS Spectr 14:299–313

    Article  PubMed  Google Scholar 

  38. Schmahmann JD, Pandya D (2009) Fiber pathways of the brain. Oxford University Press, New York

    Google Scholar 

  39. de Diego-Adeliño J, Pires P, Gómez-Ansón B et al (2014) Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol Med 44:1171–1182. doi:10.1017/S003329171300158X

    Article  PubMed  Google Scholar 

  40. First MB, Spitzer RL, Gibbon M, Williams JBW (1997) Structured clinical interview for DSM-IV axis I disorders SCID-I. American Psychiatric Pub, Arlington

    Google Scholar 

  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lesch KP, Bengel D, Heils A et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  CAS  PubMed  Google Scholar 

  44. Praschak-Rieder N, Kennedy J, Wilson AA et al (2007) Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry 62:327–331. doi:10.1016/j.biopsych.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  45. Hu X-Z, Lipsky RH, Zhu G et al (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78:815–826. doi:10.1086/503850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rybakowski JK, Borkowska A, Czerski PM et al (2003) Polymorphism of the brain-derived neurotrophic factor gene and performance on a cognitive prefrontal test in bipolar patients. Bipolar Disord 5:468–472

    Article  CAS  PubMed  Google Scholar 

  47. Pregelj P, Nedic G, Paska AV et al (2011) The association between brain-derived neurotrophic factor polymorphism (BDNF Val66Met) and suicide. J Affect Disord 128:287–290. doi:10.1016/j.jad.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Klomp N, Heynderickx I (2010) A perceptually relevant approach to ringing region detection. IEEE Trans Image Process 19:1414–1426. doi:10.1109/TIP.2010.2041406

    Article  PubMed  Google Scholar 

  49. MacQueen GM, Yucel K, Taylor VH et al (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 64:880–883. doi:10.1016/j.biopsych.2008.06.027

    Article  PubMed  Google Scholar 

  50. Guo W-B, Liu F, Chen J-D et al (2012) Altered white matter integrity of forebrain in treatment-resistant depression: a diffusion tensor imaging study with tract-based spatial statistics. Prog Neuropsychopharmacol Biol Psychiatry 38:201–206. doi:10.1016/j.pnpbp.2012.03.012

    Article  PubMed  Google Scholar 

  51. Malone DA, Dougherty DD, Rezai AR et al (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275. doi:10.1016/j.biopsych.2008.08.029

    Article  PubMed  Google Scholar 

  52. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505. doi:10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  53. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  54. Rueckert D, Sonoda LI, Hayes C et al (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721. doi:10.1109/42.796284

    Article  CAS  PubMed  Google Scholar 

  55. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25. doi:10.1002/hbm.1058

    Article  PubMed  Google Scholar 

  56. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98. doi:10.1016/j.neuroimage.2008.03.061

    Article  PubMed  Google Scholar 

  57. Hua K, Oishi K, Zhang J et al (2009) Mapping of functional areas in the human cortex based on connectivity through association fibers. Cereb Cortex 19:1889–1895. doi:10.1093/cercor/bhn215

    Article  PubMed  Google Scholar 

  58. Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87. doi:10.1148/radiol.2301021640

    Article  PubMed  Google Scholar 

  59. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  60. Stevens JP (2012) Applied multivariate statistics for the social sciences, 5th edn. Routledge, London

    Google Scholar 

  61. Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  62. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  63. Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36:183–206. doi:10.1038/npp.2010.166

    Article  PubMed  Google Scholar 

  64. Carballedo A, Lisiecka D, Fagan A et al (2012) Early life adversity is associated with brain changes in subjects at family risk for depression. World J Biol Psychiatry 13:569–578. doi:10.3109/15622975.2012.661079

    Article  PubMed  Google Scholar 

  65. Steffens DC, Taylor WD, Denny KL et al (2011) Structural integrity of the uncinate fasciculus and resting state functional connectivity of the ventral prefrontal cortex in late life depression. PLoS One 6:e22697. doi:10.1371/journal.pone.0022697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Svoboda E-M (2007) The functional neuroanatomy of autobiographical memory. ProQuest, Ann Arbor

    Google Scholar 

  67. Schacter DL, Addis DR, Buckner RL (2007) Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci 8:657–661. doi:10.1038/nrn2213

    Article  CAS  PubMed  Google Scholar 

  68. Ochsner KN, Beer JS, Robertson ER et al (2005) The neural correlates of direct and reflected self-knowledge. Neuroimage 28:797–814. doi:10.1016/j.neuroimage.2005.06.069

    Article  PubMed  Google Scholar 

  69. Johnson MK, Raye CL, Mitchell KJ et al (2006) Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc Cogn Affect Neurosci 1:56–64. doi:10.1093/scan/nsl004

    Article  PubMed  PubMed Central  Google Scholar 

  70. Foland-Ross LC, Hamilton P, Sacchet MD et al (2014) Activation of the medial prefrontal and posterior cingulate cortex during encoding of negative material predicts symptom worsening in major depression. NeuroReport 25:324–329. doi:10.1097/WNR.0000000000000095

    PubMed  PubMed Central  Google Scholar 

  71. Korgaonkar MS, Williams LM, Song YJ et al (2014) Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br J Psychiatry 205:321–328. doi:10.1192/bjp.bp.113.140376

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an investigator-initiated grant from Astra Zeneca (Dr. Ramasubbu). The infrastructure for this study was funded through the Hotchkiss Brain Institute for Neuroimaging Research Unit at Seaman Family MRI Research Centre, Foothills Hospital and the Mathison Centre for Mental Health Research and Education, Calgary. We acknowledge the contribution of Gaxiola Ismael, Filomeno Cortese and Brad Goodyear for imaging data acquisition, storage and quality assurance. The authors wish to thank all participants who volunteered their time for this study. The trial is registered at clinical trials.gov (NCT 02132286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamannar Ramasubbu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatham, E.L., Hall, G.B.C., Clark, D. et al. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression. Eur Arch Psychiatry Clin Neurosci 267, 135–147 (2017). https://doi.org/10.1007/s00406-016-0702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0702-9

Keywords

Navigation