Skip to main content
Log in

Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150–550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abasolo D, Hornero R, Espino P, Alvarez D, Poza J (2006) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 27:241–253

    Article  CAS  PubMed  Google Scholar 

  2. Bachiller A, Diez A, Suazo V, Dominguez C, Ayuso M, Hornero R, Poza J, Molina V (2014) Decreased spectral entropy modulation in patients with schizophrenia during a p300 task. Eur Arch Psychiatry Clin Neurosci 264:533–543

    Article  PubMed  Google Scholar 

  3. Bachiller A, Lubeiro A, Díez A, Suazo V, Domínguez C, Blanco JA, Ayuso M, Hornero R, Poza J, Molina V (2014) Decreased entropy modulation of EEG response to novelty and relevance in schizophrenia during a P300 task. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-014-0525-5

    Google Scholar 

  4. Berezianos A, Tong S, Thakor N (2003) Time-dependant entropy estimation of EEG rhythm changes following brain ischemia. Ann Biomed Eng 31:221–232

    Article  Google Scholar 

  5. Brain Products GmbH (2006) Brain vision analyzer: user manual. Brain Products GmbH, Munich

    Google Scholar 

  6. Delorme A, Makeig S (2004) Eeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  7. Diez A, Suazo V, Casado P, Martin-Loeches M, Molina V (2013) Spatial distribution and cognitive correlates of gamma noise power in schizophrenia. Psychol Med 43:1175–1186

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Burgos G, Fish KN, Lewis DA (2011) GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast 2011:723184

    PubMed Central  PubMed  Google Scholar 

  9. Gonzalez-Burgos G, Lewis DA (2012) NMDA receptor hypofunction, parvalbumin-positive neurons and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957. doi:10.1093/schbul/sbs010

    Article  PubMed Central  PubMed  Google Scholar 

  10. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79:204–210

    Article  CAS  PubMed  Google Scholar 

  11. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298

    Article  PubMed  Google Scholar 

  13. Mocks J, Kohler W, Gasser T, Pham DT (1988) Novel approaches to the problem of latency jitter. Psychophysiology 25:217–226

    Article  CAS  PubMed  Google Scholar 

  14. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  CAS  PubMed  Google Scholar 

  15. Pomarol-Clotet E, Salvador R, Sarro S, Gomar J, Vila F, Martinez A, Guerrero A, Ortiz-Gil J, Sans-Sansa B, Capdevila A, Cebamanos JM, McKenna PJ (2008) Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med 38:1185–1193

    Article  CAS  PubMed  Google Scholar 

  16. Roach BJ, Mathalon DH (2008) Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34:907–926

    Article  PubMed Central  PubMed  Google Scholar 

  17. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MC (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human bold signal. Neuron 69:572–583

    Article  CAS  PubMed  Google Scholar 

  18. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Suazo V, Diez A, Martin C, Ballesteros A, Casado P, Martin-Loeches M, Molina V (2012) Elevated noise power in gamma band related to negative symptoms and memory deficit in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 38:270–275

    Article  Google Scholar 

  20. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80

    Article  PubMed  Google Scholar 

  21. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JD, Seidman LJ (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 106:1279–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR (2004) Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 161:490–500

    Article  PubMed  Google Scholar 

  23. Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y, Herrmann WM, Coppola R (2000) Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111:837–849

    Article  CAS  PubMed  Google Scholar 

  24. Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58:429–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported in part by: ‘Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III)’ (FIS PI1102203) and the ‘Gerencia Regional de Salud de Castilla y León’ (GRS 613/A/11) grants; ‘Ministerio de Economía y Competitividad’ and FEDER under project TEC2011-22987 and by the ‘Project Cero 2011 on Ageing’ from ‘Fundación General CSIC’, ‘Obra Social La Caixa’ and CSIC; a PIF-UVA grant from the University of Valladolid to A. Bachiller; and a predoctoral scholarship from the University of Salamanca and Santander Bank to V. Suazo.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Molina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, V., Bachiller, A., Suazo, V. et al. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia. Eur Arch Psychiatry Clin Neurosci 266, 55–61 (2016). https://doi.org/10.1007/s00406-014-0569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0569-6

Keywords

Navigation