Skip to main content

Advertisement

Log in

Prenatal immunologic predictors of postpartum depressive symptoms: a prospective study for potential diagnostic markers

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

In postpartum depression (PPD), immunologic changes have been proposed to be involved in the disease pathology. The study evaluates the regulation of the innate and adaptive immune response over the course of late pregnancy and postpartum period and their association with the development of postpartum depressive symptoms. Furthermore, prenatal immunologic markers for a PPD were investigated. Hundred pregnant women were included. At 34th and 38th week of pregnancy as well as 2 days, 7 weeks and 6 months postpartum, immune parameters (neopterin, regulatory T cells, CXCR1, CCR2, MNP1 and CD11a) were measured by flow cytometry/ELISA, and the psychopathology was evaluated. We found that regulatory T cells were significantly increased prenatal (p = 0.011) and postnatal (p = 0.01) in mothers with postnatal depressive symptoms. The decrease in CXCR 1 after delivery was significantly higher in mother with postnatal depressive symptoms (p = 0.032). Mothers with postnatal depressive symptoms showed already prenatal significantly elevated neopterin levels (p = 0.049). Finally, regulatory T cells in pregnancy strongly predict postnatal depressive symptoms (p = 0.004). The present study revealed that prenatal and postnatal immunologic parameters are associated with postpartum depressive symptoms in mothers. In addition, we found immune markers that could eventually be the base for a biomarker set that predicts postnatal depressive symptoms already during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dietz PM, Williams SB, Callaghan WM, Bachman DJ, Whitlock EP, Hornbrook MC (2007) Clinically identified maternal depression before, during, and after pregnancies ending in live births. Am J Psychiatry 164(10):1515–1520. doi:10.1176/appi.ajp.2007.06111893

    Article  PubMed  Google Scholar 

  2. Meltzer-Brody S, Boschloo L, Jones I, Sullivan PF, Penninx BW (2013) The EPDS-Lifetime: assessment of lifetime prevalence and risk factors for perinatal depression in a large cohort of depressed women. Arch Womens Ment Health. doi:10.1007/s00737-013-0372-9

    PubMed Central  Google Scholar 

  3. Pawlby S, Hay DF, Sharp D, Waters CS, O’Keane V (2009) Antenatal depression predicts depression in adolescent offspring: prospective longitudinal community-based study. J Affect Disord 113(3):236–243. doi:10.1016/j.jad.2008.05.018

    Article  PubMed  Google Scholar 

  4. Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):664–675. doi:10.1016/j.pnpbp.2010.06.014

    Article  PubMed  CAS  Google Scholar 

  5. Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG (1993) Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 151(9):4562–4573

    PubMed  CAS  Google Scholar 

  6. Luppi P (2003) How immune mechanisms are affected by pregnancy. Vaccine 21(24):3352–3357

    Article  PubMed  CAS  Google Scholar 

  7. Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5(3):266–271. doi:10.1038/ni1037

    Article  PubMed  CAS  Google Scholar 

  8. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112(1):38–43. doi:10.1111/j.1365-2567.2004.01869.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Gennaro S, Fehder W, Gallagher P, Miller S, Douglas SD, Campbell DE (1997) Lymphocyte, monocyte, and natural killer cell reference ranges in postpartal women. Clin Diagn Lab Immunol 4(2):195–201

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Maes M, Lin AH, Ombelet W, Stevens K, Kenis G, De Jongh R, Cox J, Bosmans E (2000) Immune activation in the early puerperium is related to postpartum anxiety and depressive symptoms. Psychoneuroendocrinology 25(2):121–137

    Article  PubMed  CAS  Google Scholar 

  11. Maes M, Lin AH, Ombelet W, Stevens K, Kenis G, De Jongh R, Cox J, Bosmans E (2000) Immune activation in the early puerperium is related to postpartum anxiety and depressive symptoms. Psychoneuroendocrinology 25(2):121–137

    Article  PubMed  CAS  Google Scholar 

  12. Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91(3):401–415. doi:10.1189/jlb.0811394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137. doi:10.1146/annurev.immunol.21.120601.140946

    Article  PubMed  CAS  Google Scholar 

  14. Thomas ML (1989) The leukocyte common antigen family. Annu Rev Immunol 7:339–369

    Article  PubMed  CAS  Google Scholar 

  15. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. doi:10.1084/jem.20060772

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, Ocheltree EL, Greenberg PD, Ochs HD, Rudensky AY (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103(17):6659–6664. doi:10.1073/pnas.0509484103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110(8):2983–2990. doi:10.1182/blood-2007-06-094656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Baruch K, Schwartz M (2013) CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 34:11–16. doi:10.1016/j.bbi.2013.04.002

    Article  PubMed  CAS  Google Scholar 

  19. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC (2012) The three human monocyte subsets: implications for health and disease. Immunol Res 53(1–3):41–57. doi:10.1007/s12026-012-8297-3

    Article  PubMed  CAS  Google Scholar 

  20. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  PubMed  CAS  Google Scholar 

  21. Fuchs D, Weiss G, Reibnegger G, Wachter H (1992) The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit Rev Clin Lab Sci 29(3–4):307–341

    Article  PubMed  CAS  Google Scholar 

  22. Celik C, Erdem M, Cayci T, Ozdemir B, Ozgur Akgul E, Kurt YG, Yaman H, Isintas M, Ozgen F, Ozsahin A (2010) The association between serum levels of neopterin and number of depressive episodes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 34(2):372–375. doi:10.1016/j.pnpbp.2010.01.002

    Article  PubMed  CAS  Google Scholar 

  23. Spencer ME, Jain A, Matteini A, Beamer BA, Wang NY, Leng SX, Punjabi NM, Walston JD, Fedarko NS (2010) Serum levels of the immune activation marker neopterin change with age and gender and are modified by race, BMI, and percentage of body fat. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glq066

    PubMed  PubMed Central  Google Scholar 

  24. Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger R, Yim JJ, Wachter H (1991) Biochemistry and function of pteridine synthesis in human and murine macrophages. Pathobiology 59(4):276–279

    Article  PubMed  CAS  Google Scholar 

  25. Hawley CJ, Gale TM, Sivakumaran T, Hertfordshire Neuroscience Research group (2002) Defining remission by cut off score on the MADRS: selecting the optimal value. J Affect Disord 72(2):177–184

    Article  PubMed  CAS  Google Scholar 

  26. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):744–759. doi:10.1016/j.pnpbp.2010.08.026

    Article  PubMed  CAS  Google Scholar 

  27. Hammen C (2003) Interpersonal stress and depression in women. J Affect Disord 74(1):49–57

    Article  PubMed  Google Scholar 

  28. Weissman MM, Wickramaratne P, Nomura Y, Warner V, Pilowsky D, Verdeli H (2006) Offspring of depressed parents: 20 years later. Am J Psychiatry 163(6):1001–1008. doi:10.1176/appi.ajp.163.6.1001

    Article  PubMed  Google Scholar 

  29. Pick R, Brechtefeld D, Walzog B (2013) Intraluminal crawling versus interstitial neutrophil migration during inflammation. Mol Immunol 55(1):70–75. doi:10.1016/j.molimm.2012.12.008

    Article  PubMed  CAS  Google Scholar 

  30. Glynn LM, Davis EP, Sandman CA (2013) New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 47(6):363–370. doi:10.1016/j.npep.2013.10.007

    Article  PubMed  CAS  Google Scholar 

  31. Golding A, Hasni S, Illei G, Shevach EM (2013) The percentage of FoxP3+ Helios+ T reg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum 65(11):2898–2906. doi:10.1002/art.38119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all study participants. This study was funded without any outside grants; instead, only own funds of the Ludwig Maximilian University were used.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Krause.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, D., Jobst, A., Kirchberg, F. et al. Prenatal immunologic predictors of postpartum depressive symptoms: a prospective study for potential diagnostic markers. Eur Arch Psychiatry Clin Neurosci 264, 615–624 (2014). https://doi.org/10.1007/s00406-014-0494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0494-8

Keywords

Navigation