Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors

  • Alkomiet Hasan
  • Amanda Mitchell
  • Anja Schneider
  • Tobias Halene
  • Schahram Akbarian
Invited Review


Notwithstanding the considerable advances in the treatment options for schizophrenia, the cognitive symptoms in particular are not receptive to antipsychotic treatment and considered one of the main predictors for poor social and functional outcome of the disease. Recent findings in preclinical model systems indicate that epigenetic modulation might emerge as a promising target for the treatment of cognitive disorders. The aim of this review is to introduce some of the principles of chromatin biology to the reader and to discuss a possible role in the neurobiology and pathophysiology of schizophrenia. We will discuss potential epigenetic targets for drug therapy, including histone deacetylase inhibitors (HDACi). In a second part, conceptual and practical challenges associated with clinical trials of chromatin-modifying drugs in psychiatric patient populations are discussed, including safety profiles, the potential for adverse effects and general issues revolving around pharmacokinetics and pharmacodynamics. Additional investigations are required in order to fully evaluate the potential of HDACi and similar “epigenetic therapies” as novel treatment options for schizophrenia and other psychotic disease.


Schizophrenia Epigenetics Histone deacetylase inhibitor Chromatin biology Cognitive deficits 


  1. 1.
    Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145PubMedCrossRefGoogle Scholar
  2. 2.
    Abujamra AL, Dos Santos MP, Roesler R, Schwartsmann G, Brunetto AL (2010) Histone deacetylase inhibitors: a new perspective for the treatment of leukemia. Leuk Res 34:687–695PubMedCrossRefGoogle Scholar
  3. 3.
    Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52:293–304PubMedCrossRefGoogle Scholar
  4. 4.
    Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, Roberts RC, Bunney WE Jr, Conley RC, Jones EG, Tamminga CA, Guo Y (2005) Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62:829–840PubMedCrossRefGoogle Scholar
  5. 5.
    Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959PubMedCrossRefGoogle Scholar
  6. 6.
    Allen MH, Hirschfeld RM, Wozniak PJ, Baker JD, Bowden CL (2006) Linear relationship of valproate serum concentration to response and optimal serum levels for acute mania. Am J Psychiatry 163:272–275PubMedCrossRefGoogle Scholar
  7. 7.
    An der Heiden W, Häfner H (2011) Course and outcome. In: Weinberger D, Harrison P (eds) Schizophrenia, 3rd edn. Wiley-Blackwell, OxfordGoogle Scholar
  8. 8.
    Aston C, Jiang L, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77:858–866PubMedCrossRefGoogle Scholar
  9. 9.
    Bagnes C, Panchuk PN, Recondo G (2010) Antineoplastic chemotherapy induced QTc prolongation. Curr Drug Saf 5:93–96PubMedCrossRefGoogle Scholar
  10. 10.
    Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, Bahr M, Burkhardt S, Delalle I, Kugler S, Fischer A, Sananbenesi F (2012) HDAC1 regulates fear extinction in mice. J Neurosci 32:5062–5073PubMedCrossRefGoogle Scholar
  11. 11.
    Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, Lynch G, Greene RW, Wood MA (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556PubMedCrossRefGoogle Scholar
  12. 12.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMedCrossRefGoogle Scholar
  13. 13.
    Benes FM (2010) Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology 35:239–257PubMedCrossRefGoogle Scholar
  14. 14.
    Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 104:10164–10169PubMedCrossRefGoogle Scholar
  15. 15.
    Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32:1888–1902PubMedCrossRefGoogle Scholar
  16. 16.
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412PubMedCrossRefGoogle Scholar
  17. 17.
    Bora E, Yucel M, Pantelis C (2009) Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. Br J Psychiatry 195:475–482PubMedCrossRefGoogle Scholar
  18. 18.
    Bousiges O, Vasconcelos AP, Neidl R, Cosquer B, Herbeaux K, Panteleeva I, Loeffler JP, Cassel JC, Boutillier AL (2010) Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology 35:2521–2537PubMedCrossRefGoogle Scholar
  19. 19.
    Bruserud O, Stapnes C, Ersvaer E, Gjertsen BT, Ryningen A (2007) Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Curr Pharm Biotechnol 8:388–400PubMedCrossRefGoogle Scholar
  20. 20.
    Buchanan RW, Kreyenbuhl J, Kelly DL, Noel JM, Boggs DL, Fischer BA, Himelhoch S, Fang B, Peterson E, Aquino PR, Keller W (2010) The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr Bull 36:71–93PubMedCrossRefGoogle Scholar
  21. 21.
    Celegene (2012) Presribing Information ISTODAX (romidepsin) for injection: Update Manufacturing Information 3/2012Google Scholar
  22. 22.
    Charych EI, Liu F, Moss SJ, Brandon NJ (2009) GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 57:481–495PubMedCrossRefGoogle Scholar
  23. 23.
    Chiesa A, Chierzi F, De Ronchi D, Serretti A (2012) Quetiapine for bipolar depression: a systematic review and meta-analysis. Int Clin Psychopharmacol 27:76–90PubMedCrossRefGoogle Scholar
  24. 24.
    Co M (2011) Presribing Information ZOLINZA (vorinostat) capsules: Revised 11/2011Google Scholar
  25. 25.
    Corporation C (2012) Presribing information ISTODAX (romidepsin) for injection: update manufacturing information 3/2012Google Scholar
  26. 26.
    Costa E, Chen Y, Dong E, Grayson DR, Kundakovic M, Maloku E, Ruzicka W, Satta R, Veldic M, Zhubi A, Guidotti A (2009) GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Rev Neurother 9:87–98PubMedCrossRefGoogle Scholar
  27. 27.
    Crow TJ (2011) The missing genes: what happened to the heritability of psychiatric disorders? Mol Psychiatry 16:362–364PubMedCrossRefGoogle Scholar
  28. 28.
    Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162PubMedCrossRefGoogle Scholar
  29. 29.
    Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508PubMedCrossRefGoogle Scholar
  30. 30.
    Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989PubMedCrossRefGoogle Scholar
  31. 31.
    Dong E, Nelson M, Grayson DR, Costa E, Guidotti A (2008) Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci USA 105:13614–13619PubMedCrossRefGoogle Scholar
  32. 32.
    Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V (2004) GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 76:581–592PubMedCrossRefGoogle Scholar
  33. 33.
    Duncan CE, Webster MJ, Rothmond DA, Bahn S, Elashoff M, Shannon Weickert C (2010) Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. J Psychiatr Res 44(10):678–681Google Scholar
  34. 34.
    Echaniz-Laguna A, Bousiges O, Loeffler JP, Boutillier AL (2008) Histone deacetylase inhibitors: therapeutic agents and research tools for deciphering motor neuron diseases. Curr Med Chem 15:1263–1273PubMedCrossRefGoogle Scholar
  35. 35.
    Ederveen TH, Mandemaker IK, Logie C (2011) The human histone H3 complement anno 2011. Biochim Biophys Acta 1809:577–586PubMedCrossRefGoogle Scholar
  36. 36.
    Elaut G, Rogiers V, Vanhaecke T (2007) The pharmaceutical potential of histone deacetylase inhibitors. Curr Pharm Des 13:2584–2620PubMedCrossRefGoogle Scholar
  37. 37.
    Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2011) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617CrossRefGoogle Scholar
  38. 38.
    Gavin DP, Kartan S, Chase K, Grayson DR, Sharma RP (2008) Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophr Res 103:330–332PubMedCrossRefGoogle Scholar
  39. 39.
    Goff DC, Hill M, Barch D (2010) The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Behav 99:245–253PubMedCrossRefGoogle Scholar
  40. 40.
    Gold JM (2004) Cognitive deficits as treatment targets in schizophrenia. Schizophr Res 72:21–28PubMedCrossRefGoogle Scholar
  41. 41.
    Gottlicher M (2004) Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol 83(Suppl 1):S91–S92PubMedGoogle Scholar
  42. 42.
    Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978PubMedCrossRefGoogle Scholar
  43. 43.
    Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5(1):52–63. doi:10.1002/emmm.201201923 Google Scholar
  44. 44.
    Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226PubMedCrossRefGoogle Scholar
  45. 45.
    Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102:9341–9346PubMedCrossRefGoogle Scholar
  46. 46.
    Grayson DR, Kundakovic M, Sharma RP (2010) Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 77:126–135PubMedCrossRefGoogle Scholar
  47. 47.
    Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330PubMedGoogle Scholar
  48. 48.
    Griswold KS, Pessar LF (2000) Management of bipolar disorder. Am Fam Physician 62:1343–1358PubMedGoogle Scholar
  49. 49.
    Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60PubMedCrossRefGoogle Scholar
  50. 50.
    Guidotti A, Auta J, Chen Y, Davis JM, Dong E, Gavin DP, Grayson DR, Matrisciano F, Pinna G, Satta R, Sharma RP, Tremolizzo L, Tueting P (2011) Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 60:1007–1016PubMedCrossRefGoogle Scholar
  51. 51.
    Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E (2005) GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology 180:191–205PubMedCrossRefGoogle Scholar
  52. 52.
    Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751PubMedCrossRefGoogle Scholar
  53. 53.
    Halene TB, Siegel SJ (2007) PDE inhibitors in psychiatry—future options for dementia, depression and schizophrenia? Drug Discov Today 12:870–878PubMedCrossRefGoogle Scholar
  54. 54.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478PubMedGoogle Scholar
  55. 55.
    Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibault P, Möller HJ (2013) World Federation of Societies of Biological Psychiatry (WFSBP): Guidelines for biological treatment of schizophrenia, Part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry 14(1):2–44. doi:10.3109/15622975.2012.739708
  56. 56.
    Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibaut F, Moller HJ (2012) World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J Biol Psychiatry 13:318–378PubMedCrossRefGoogle Scholar
  57. 57.
    Hasan A, Nitsche MA, Rein B, Schneider-Axmann T, Guse B, Gruber O, Falkai P, Wobrock T (2011) Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res 224:15–22PubMedCrossRefGoogle Scholar
  58. 58.
    Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008) Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479–489PubMedCrossRefGoogle Scholar
  59. 59.
    Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12:426–445PubMedCrossRefGoogle Scholar
  60. 60.
    Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski JQ, Eberwine JH (2002) Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch Gen Psychiatry 59:631–640PubMedCrossRefGoogle Scholar
  61. 61.
    Hirsch E, Schmitz B, Carreno M (2003) Epilepsy, antiepileptic drugs (AEDs) and cognition. Acta Neurol Scand Suppl 180:23–32PubMedCrossRefGoogle Scholar
  62. 62.
    Hoe M, Nakagami E, Green MF, Brekke JS (2012) The causal relationships between neurocognition, social cognition and functional outcome over time in schizophrenia: a latent difference score approach. Psychol Med 42:1–13CrossRefGoogle Scholar
  63. 63.
    Holt DJ, Lebron-Milad K, Milad MR, Rauch SL, Pitman RK, Orr SP, Cassidy BS, Walsh JP, Goff DC (2009) Extinction memory is impaired in schizophrenia. Biol Psychiatry 65:455–463PubMedCrossRefGoogle Scholar
  64. 64.
    Horan WP, Kern RS, Harvey PO, Green MF (2011) Neurocognition, social cogniton, and functional outcome in schizophrenia. In: Gaebel W (ed) Schizophenia—current science and clinical practice. Wiley, ChichesterGoogle Scholar
  65. 65.
    Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G, Macarron R, De Los Frailes M, Perez P, Krawiec J, Winkler J, Jaye M (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728PubMedCrossRefGoogle Scholar
  66. 66.
    Huang HS, Akbarian S (2007) GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2:e809PubMedCrossRefGoogle Scholar
  67. 67.
    Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, Akbarian S (2007) Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27:11254–11262PubMedCrossRefGoogle Scholar
  68. 68.
    Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11:227–249PubMedCrossRefGoogle Scholar
  69. 69.
    Ibrahim HM, Tamminga CA (2011) Schizophrenia: treatment targets beyond monoamine systems. Annu Rev Pharmacol Toxicol 51:189–209PubMedCrossRefGoogle Scholar
  70. 70.
    Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, Kato T (2005) DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci 25:5376–5381PubMedCrossRefGoogle Scholar
  71. 71.
    Kalin JH, Butler KV, Kozikowski AP (2009) Creating zinc monkey wrenches in the treatment of epigenetic disorders. Curr Opin Chem Biol 13:263–271PubMedCrossRefGoogle Scholar
  72. 72.
    Kano S, Colantuoni C, Han F, Zhou Z, Yuan Q, Wilson A, Takayanagi Y, Lee Y, Rapoport J, Eaton W, Cascella N, Ji H, Goldman D, Sawa A (2012) Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol Psychiatry. doi:10.1038/mp.2012.120
  73. 73.
    Katsel P, Davis KL, Haroutunian V (2005) Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 79:157–173PubMedCrossRefGoogle Scholar
  74. 74.
    Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868PubMedCrossRefGoogle Scholar
  75. 75.
    Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589PubMedCrossRefGoogle Scholar
  76. 76.
    Kinney SM, Chin HG, Vaisvila R, Bitinaite J, Zheng Y, Esteve PO, Feng S, Stroud H, Jacobsen SE, Pradhan S (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286:24685–24693PubMedCrossRefGoogle Scholar
  77. 77.
    Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972PubMedCrossRefGoogle Scholar
  78. 78.
    Kouraklis G, Theocharis S (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol Rep 15:489–494PubMedGoogle Scholar
  79. 79.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  80. 80.
    Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167:1305–1320PubMedCrossRefGoogle Scholar
  81. 81.
    Kundakovic M, Chen Y, Guidotti A, Grayson DR (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:342–354PubMedCrossRefGoogle Scholar
  82. 82.
    Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, Dietz DM, Mocci G, Gabilondo AM, Hanks J, Umali A, Callado LF, Gallitano AL, Neve RL, Shen L, Buxbaum JD, Han MH, Nestler EJ, Meana JJ, Russo SJ, Gonzalez-Maeso J (2012) HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 15:1245–1254PubMedCrossRefGoogle Scholar
  83. 83.
    Lattal KM, Barrett RM, Wood MA (2007) Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav Neurosci 121:1125–1131PubMedCrossRefGoogle Scholar
  84. 84.
    Lee H, Dvorak D, Kao HY, Duffy AM, Scharfman HE, Fenton AA (2012) Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron 75:714–724PubMedCrossRefGoogle Scholar
  85. 85.
    Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, Kreyenbuhl J (2004) Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 161:1–56PubMedCrossRefGoogle Scholar
  86. 86.
    Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM (2008) Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 28:2576–2588PubMedCrossRefGoogle Scholar
  87. 87.
    Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedCrossRefGoogle Scholar
  88. 88.
    Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186PubMedCrossRefGoogle Scholar
  89. 89.
    Li J, Guo Y, Schroeder FA, Youngs RM, Schmidt TW, Ferris C, Konradi C, Akbarian S (2004) Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. J Neurochem 90:1117–1131PubMedCrossRefGoogle Scholar
  90. 90.
    Li Q, Barkess G, Qian H (2006) Chromatin looping and the probability of transcription. Trends Genet 22:197–202PubMedCrossRefGoogle Scholar
  91. 91.
    Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JM, van den Oord EJ, Rubio JP, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472PubMedCrossRefGoogle Scholar
  92. 92.
    Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223PubMedCrossRefGoogle Scholar
  93. 93.
    Lynch DR Jr, Washam JB, Newby LK (2012) QT interval prolongation and torsades de pointes in a patient undergoing treatment with vorinostat: a case report and review of the literature. Cardiol J 19:434–438PubMedCrossRefGoogle Scholar
  94. 94.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW, Dias-Neto E (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275–289PubMedCrossRefGoogle Scholar
  95. 95.
    Masetti R, Serravalle S, Biagi C, Pession A (2011) The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol 2011:148046PubMedCrossRefGoogle Scholar
  96. 96.
    McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31:764–774PubMedCrossRefGoogle Scholar
  97. 97.
    McQuown SC, Wood MA (2011) HDAC3 and the molecular brake pad hypothesis. Neurobiol Learn Mem 96:27–34PubMedCrossRefGoogle Scholar
  98. 98.
    Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31:288–294PubMedCrossRefGoogle Scholar
  99. 99.
    Merck (2011) Presribing information ZOLINZA (vorinostat) capsules: revised 11/2011Google Scholar
  100. 100.
    Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ (2009) Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23:315–336PubMedCrossRefGoogle Scholar
  101. 101.
    Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82:696–711PubMedCrossRefGoogle Scholar
  102. 102.
    Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227PubMedCrossRefGoogle Scholar
  103. 103.
    Mohamed S, Paulsen JS, O’Leary D, Arndt S, Andreasen N (1999) Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Arch Gen Psychiatry 56:749–754PubMedCrossRefGoogle Scholar
  104. 104.
    Monsey MS, Ota KT, Akingbade IF, Hong ES, Schafe GE (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One 6:e19958PubMedCrossRefGoogle Scholar
  105. 105.
    Mouri A, Nagai T, Ibi D, Yamada K (2012) Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules. Neurobiol Dis. doi:10.1016/j.nbd.2012.10.025
  106. 106.
    Narayan PJ, Dragunow M (2010) High content analysis of histone acetylation in human cells and tissues. J Neurosci Methods 193:54–61PubMedCrossRefGoogle Scholar
  107. 107.
    Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM (2011) Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 70:88–96PubMedCrossRefGoogle Scholar
  108. 108.
    Palmer BW, Heaton RK, Paulsen JS, Kuck J, Braff D, Harris MJ, Zisook S, Jeste DV (1997) Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology 11:437–446PubMedCrossRefGoogle Scholar
  109. 109.
    Palmieri D, Lockman PR, Thomas FC, Hua E, Herring J, Hargrave E, Johnson M, Flores N, Qian Y, Vega-Valle E, Taskar KS, Rudraraju V, Mittapalli RK, Gaasch JA, Bohn KA, Thorsheim HR, Liewehr DJ, Davis S, Reilly JF, Walker R, Bronder JL, Feigenbaum L, Steinberg SM, Camphausen K, Meltzer PS, Richon VM, Smith QR, Steeg PS (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:6148–6157PubMedCrossRefGoogle Scholar
  110. 110.
    Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756PubMedCrossRefGoogle Scholar
  111. 111.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741PubMedCrossRefGoogle Scholar
  112. 112.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661PubMedCrossRefGoogle Scholar
  113. 113.
    Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC (2007) Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res 151:179–188PubMedCrossRefGoogle Scholar
  114. 114.
    Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, Akbari O, Torday JS (2012) Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 10:129PubMedCrossRefGoogle Scholar
  115. 115.
    Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339PubMedCrossRefGoogle Scholar
  116. 116.
    Sananbenesi F, Fischer A (2009) The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biol Chem 390:1145–1153PubMedCrossRefGoogle Scholar
  117. 117.
    Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154PubMedCrossRefGoogle Scholar
  118. 118.
    Sharma RP, Grayson DR, Gavin DP (2008) Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98:111–117PubMedCrossRefGoogle Scholar
  119. 119.
    Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL, Guo Y, Lessard A, Akbarian S, Weng Z (2012) Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry 69:314–324PubMedCrossRefGoogle Scholar
  120. 120.
    Silverstein SM, Schenkel LS, Valone C, Nuernberger SW (1998) Cognitive deficits and psychiatric rehabilitation outcomes in schizophrenia. Psychiatr Q 69:169–191PubMedCrossRefGoogle Scholar
  121. 121.
    Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ, Poirier MG (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci USA 108:12711–12716PubMedCrossRefGoogle Scholar
  122. 122.
    Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 103:1587–1592PubMedCrossRefGoogle Scholar
  123. 123.
    Smith DF, MacGregor JT, Hiatt RA, Hooper NK, Wehr CM, Peters B, Goldman LR, Yuan LA, Smith PA, Becker CE (1990) Micronucleated erythrocytes as an index of cytogenetic damage in humans: demographic and dietary factors associated with micronucleated erythrocytes in splenectomized subjects. Cancer Res 50:5049–5054PubMedGoogle Scholar
  124. 124.
    Snitz BE, Macdonald AW 3rd, Carter CS (2006) Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull 32:179–194PubMedCrossRefGoogle Scholar
  125. 125.
    Tamayo JM, Zarate CA Jr, Vieta E, Vazquez G, Tohen M (2010) Level of response and safety of pharmacological monotherapy in the treatment of acute bipolar I disorder phases: a systematic review and meta-analysis. Int J Neuropsychopharmacol 13:813–832PubMedCrossRefGoogle Scholar
  126. 126.
    Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028PubMedCrossRefGoogle Scholar
  127. 127.
    Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr Res 102:1–18PubMedCrossRefGoogle Scholar
  128. 128.
    Tang B, Dean B, Thomas EA (2011) Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 1:e64PubMedCrossRefGoogle Scholar
  129. 129.
    Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040PubMedCrossRefGoogle Scholar
  130. 130.
    Thornicroft G, Tansella M, Becker T, Knapp M, Leese M, Schene A, Vazquez-Barquero JL (2004) The personal impact of schizophrenia in Europe. Schizophr Res 69:125–132PubMedCrossRefGoogle Scholar
  131. 131.
    Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805PubMedCrossRefGoogle Scholar
  132. 132.
    Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100PubMedCrossRefGoogle Scholar
  133. 133.
    Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140PubMedCrossRefGoogle Scholar
  134. 134.
    Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, Le W (2011) Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 6:e19229PubMedCrossRefGoogle Scholar
  135. 135.
    Woo TU, Kim AM, Viscidi E (2008) Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res 1218:267–277PubMedCrossRefGoogle Scholar
  136. 136.
    Wood MA, Attner MA, Oliveira AM, Brindle PK, Abel T (2006) A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn Mem 13:609–617PubMedCrossRefGoogle Scholar
  137. 137.
    Wu Y, Blichowski M, Daskalakis ZJ, Wu Z, Liu CC, Cortez MA, Snead OC 3rd (2011) Evidence that clozapine directly interacts on the GABAB receptor. NeuroReport 22:637–641PubMedCrossRefGoogle Scholar
  138. 138.
    Yildirim E, Zhang Z, Uz T, Chen CQ, Manev R, Manev H (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci Lett 345:141–143PubMedCrossRefGoogle Scholar
  139. 139.
    Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alkomiet Hasan
    • 1
  • Amanda Mitchell
    • 2
  • Anja Schneider
    • 3
    • 4
  • Tobias Halene
    • 2
  • Schahram Akbarian
    • 2
  1. 1.Deparment of Psychiatry and PsychotherapyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Divsion of Psychiatric EpigenomicsMount Sinai School of MedicineNew YorkUSA
  3. 3.German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
  4. 4.Department of Psychiatry and PsychotherapyUniversity Medical CenterGöttingenGermany

Personalised recommendations