Neural correlates of the attention network test in schizophrenia

  • Volker BackesEmail author
  • Thilo Kellermann
  • Bianca Voss
  • Jörn Krämer
  • Conny Depner
  • Frank Schneider
  • Ute Habel
Original Paper


Attentional deficits are prominent in schizophrenia, affecting nearly all cognitive functions. Human attention comprises three essential components: alerting, orienting and executive control. For the assessment of these functions, the attention network test (ANT) has been proposed and used in healthy controls and patients. In schizophrenia, the ANT has revealed behavioral deficits; however, the corresponding neural correlates have not been examined. In the present study, neural correlates of attention were investigated in 17 schizophrenia patients and 17 healthy controls using the ANT with fMRI. Behavioral deficits emerged in the alertness system with a reduced efficiency for temporal cues. In fMRI, changes were observed for all three domains–alerting, orienting and conflict–and revealed hyper- as well as hypoactivation in patients. Affected regions during alerting comprised a broad fronto-temporo-parieto-occipito-cerebellar network, while differences during orienting mainly tapped fronto-parietal regions and during conflict processing a thalamo-frontal-temporal occipital network including the postcentral regions. In general, hyperactivations were positively correlated with more severe psychopathologial symptoms.


ANT fMRI Alertness Orienting 



This work was supported by the German Research Foundation KFO 112/2-1 and 2-2, DFG HA 3202/3-1, the Helmholtz Alliance `Mental Health in an Ageing Society′ funded by the Initiative and Networking Fund of the Helmholtz Association (HelMA, 016W0751), The IZKF of the Medical School of the RWTH Aachen (VV N68-j; N4-4).

Conflict of interest

The authors declare that they have no conflicts of interest.

This supplement was not sponsored by outside commercial interests. It was funded by the German Association for Psychiatry and Psychotherapy (DGPPN).

Supplementary material

406_2011_264_MOESM1_ESM.pdf (144 kb)
Supplementary material 1 (PDF 143 kb)
406_2011_264_MOESM2_ESM.pdf (420 kb)
Supplementary material 2 (PDF 419 kb)
406_2011_264_MOESM3_ESM.pdf (1.2 mb)
Supplementary material 3 (PDF 1198 kb)


  1. 1.
    Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546PubMedCrossRefGoogle Scholar
  2. 2.
    Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95:831–838PubMedCrossRefGoogle Scholar
  3. 3.
    Erkwoh R, Sabri O, Schreckenberger M, Setani K, Assfalg S, Sturz L, Fehler S, Plessmann S (2002) Cerebral correlates of selective attention in schizophrenic patients with formal thought disorder: a controlled h2 15o-pet study. Psychiatry Res 115:137–153PubMedCrossRefGoogle Scholar
  4. 4.
    Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26:471–479PubMedCrossRefGoogle Scholar
  5. 5.
    Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14:340–347PubMedCrossRefGoogle Scholar
  6. 6.
    Fossella J, Posner MI, Fan J, Swanson JM, Pfaff DW (2002) Attentional phenotypes for the analysis of higher mental function. ScientificWorldJournal 2:217–223PubMedCrossRefGoogle Scholar
  7. 7.
    Hietanen JK, Nummenmaa L, Nyman MJ, Parkkola R, Hamalainen H (2006) Automatic attention orienting by social and symbolic cues activates different neural networks: an fMRI study. Neuroimage 33:406–413PubMedCrossRefGoogle Scholar
  8. 8.
    Honey GD, Pomarol-Clotet E, Corlett PR, Honey RA, McKenna PJ, Bullmore ET, Fletcher PC (2005) Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 128:2597–2611PubMedCrossRefGoogle Scholar
  9. 9.
    Kellermann T, Reske M, Jansen A, Satrapi P, Shah NJ, Schneider F, Habel U (2011) Latencies in bold response during visual attention processes. Brain Res 1386:127–138PubMedCrossRefGoogle Scholar
  10. 10.
    MacDonald AW III, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838PubMedCrossRefGoogle Scholar
  11. 11.
    Nestor PG, Kubicki M, Spencer KM, Niznikiewicz M, McCarley RW, Shenton ME (2007) Attentional networks and cingulum bundle in chronic schizophrenia. Schizophr Res 90:308–315PubMedCrossRefGoogle Scholar
  12. 12.
    Ojeda N, Ortuno F, Arbizu J, Lopez P, Marti-Climent JM, Penuelas I, Cervera-Enguix S (2002) Functional neuroanatomy of sustained attention in schizophrenia: contribution of parietal cortices. Hum Brain Mapp 17:116–130PubMedCrossRefGoogle Scholar
  13. 13.
    Opgen-Rhein C, Neuhaus AH, Urbanek C, Hahn E, Sander T, Dettling M (2008) Executive attention in schizophrenic males and the impact of comt val108/158met genotype on performance on the attention network test. Schizophr Bull 34:1231–1239PubMedCrossRefGoogle Scholar
  14. 14.
    Pinheiro JC, Bates DM (2000) Mixed-effects models in s and s-plus. Springer, HeidelbergCrossRefGoogle Scholar
  15. 15.
    Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42PubMedCrossRefGoogle Scholar
  16. 16.
    Rusnakova S, Daniel P, Chladek J, Jurak P, Rektor I (2011) The executive functions in frontal and temporal lobes: a flanker task intracerebral recording study. J Clin Neurophysiol 28:30–35PubMedCrossRefGoogle Scholar
  17. 17.
    Sturm W, de Simone A, Krause BJ, Specht K, Hesselmann V, Radermacher I, Herzog H, Tellmann L, Muller-Gartner HW, Willmes K (1999) Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37:797–805PubMedCrossRefGoogle Scholar
  18. 18.
    Team RDC (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  19. 19.
    Thienel R, Voss B, Kellermann T, Reske M, Halfter S, Sheldrick AJ, Radenbach K, Habel U, Shah NJ, Schall U, Kircher T (2009) Nicotinic antagonist effects on functional attention networks. Int J Neuropsychoph 12:1295–1305CrossRefGoogle Scholar
  20. 20.
    Urbanek C, Neuhaus AH, Opgen-Rhein C, Strathmann S, Wieseke N, Schaub R, Hahn E, Dettling M (2009) Attention network test (ant) reveals gender-specific alterations of executive function in schizophrenia. Psychiatry Res 168:102–109PubMedCrossRefGoogle Scholar
  21. 21.
    Wang K, Fan J, Dong Y, Wang CQ, Lee TM, Posner MI (2005) Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophr Res 78:235–241PubMedCrossRefGoogle Scholar
  22. 22.
    Wittchen HU, Zaudig M, Fydrich T (1997) Strukturiertes klinisches interview für dsm-iv: Skid [structured clinical interview for dsmiv: Scid]. Hogrefe, GöttingenGoogle Scholar
  23. 23.
    Yucel M, Pantelis C, Stuart GW, Wood SJ, Maruff P, Velakoulis D, Pipingas A, Crowe SF, Tochon-Danguy HJ, Egan GF (2002) Anterior cingulate activation during stroop task performance: a pet to mri coregistration study of individual patients with schizophrenia. Am J Psychiatry 159:251–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Volker Backes
    • 1
    • 2
    Email author
  • Thilo Kellermann
    • 1
    • 2
  • Bianca Voss
    • 1
    • 2
  • Jörn Krämer
    • 1
    • 2
  • Conny Depner
    • 1
    • 2
  • Frank Schneider
    • 1
    • 2
  • Ute Habel
    • 1
    • 2
  1. 1.Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
  2. 2.JARA–Translational Brain MedicineAachenGermany

Personalised recommendations