Skip to main content
Log in

Differential expression of HINT1 in schizophrenia brain tissue

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Recent findings in the literature suggest a relation between histidine triad nucleotide-binding protein-1 (HINT1) and psychiatric disorders such as major depression, anxiety, and schizophrenia, although its physiological roles are not completely comprehended. Using Western blot, we compared HINT1 protein expression in the postmortem dorsolateral prefrontal cortex and thalamus of schizophrenia patients and healthy controls for contributing to elucidate the role of HINT1 in schizophrenia pathophysiology. HINT1 was found to be downregulated in the dorsolateral prefrontal cortex and upregulated in the thalamus. Our results combined to previous studies in human samples and preclinical models support the notion that HINT1 must be more explored as a potential target for psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Brzoska PM, Chen H, Levin NA, Kuo WL, Collins C, Fu KK, Gray JW, Christman MF (1996) Cloning, mapping, and in vivo localization of a human member of the PKCI-1 protein family (PRKCNH1). Genomics 36(1):151–156

    Article  PubMed  CAS  Google Scholar 

  2. Su T, Suzui M, Wang L, Lin CS, Xing WQ, Weinstein IB (2003) Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc Natl Acad Sci USA 100(13):7824–7829

    Article  PubMed  CAS  Google Scholar 

  3. Barbier E, Zapata A, Oh E, Liu Q, Zhu F, Undie A, Shippenberg T, Wang JB (2007) Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology 32(8):1774–1782

    Article  PubMed  CAS  Google Scholar 

  4. Barbier E, Wang JB (2009) Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci 10:132

    Article  PubMed  Google Scholar 

  5. Varadarajulu J, Lebar M, Krishnamoorthy G, Habelt S, Lu J, Bernard Weinstein I, Li H, Holsboer F, Turck CW, Touma C (2011) Increased anxiety-related behaviour in Hint1 knockout mice. Behav Brain Res. [Epub ahead of print]

  6. Liu Q, Puche AC, Wang JB (2008) Distribution and expression of protein kinase C interactive protein (PKCI/HINT1) in mouse central nervous system (CNS). Neurochem Res 33(7):1263–1276

    Article  PubMed  CAS  Google Scholar 

  7. Weitzdoerfer R, Stolzlechner D, Dierssen M, Ferreres J, Fountoulakis M, Lubec G (2001) Reduction of nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal Down syndrome brain. J Neural Transm Suppl 61:347–359

    PubMed  Google Scholar 

  8. Chen Q, Wang X, O’Neill FA, Walsh D, Kendler KS, Chen X (2008) Is the histidine triad nucleotide-binding protein (HINT1) gene a candidate for schizophrenia? Schizophr Res 106:200–207

    Article  PubMed  Google Scholar 

  9. Jackson KJ, Chen Q, Chen J, Aggen SH, Kendler KS, Chen X (2011) Association of the histidine-triad nucleotide-binding protein-1 (HINT1) gene variants with nicotine dependence. Pharmacogenomics J. [Epub ahead of print]

  10. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG, Freed WJ (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 58:11–20

    Article  PubMed  Google Scholar 

  11. Steriade M, Llinás RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3):649–742

    Google Scholar 

  12. Andreasen NC, Arndtm S, Swayze V 2nd, Cizadlo T, Flaum M, O’Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298

    Article  PubMed  CAS  Google Scholar 

  13. Barch DM (2005) The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol 1:321–353

    Article  PubMed  Google Scholar 

  14. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  15. Jahn T, Mussgay L (1989) Die statistische Kontrolle möglicher Medikamenteneinflüsse in experimentalpsychologischen Schizophreniestudien: Ein Vorschlag zur Berechnung von Chlorpromazinäquivalenten. Zeitschrift für klinische Psychologie und Psychotherapie 18:257e67

  16. Meltzer HY, Fatemi SH (1998) Treatment of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric text book of psychopharmacology. American Psychiatric Press, Washington, pp 127–135

    Google Scholar 

  17. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404

    Article  PubMed  Google Scholar 

  18. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  19. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163

    Article  PubMed  Google Scholar 

  20. Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Falkai P, Schmitt A, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44(16):1176–1189

    Article  PubMed  Google Scholar 

  21. Martins-de-Souza D, Menezes de Oliveira B, dos Santos Farias A, Horiuchi RS, Crepaldi Domingues C, de Paula E, Marangoni S, Gattaz WF, Dias-Neto E, Camillo Novello J (2007) The use of ASB-14 in combination with CHAPS is the best for solubilization of human brain proteins for two-dimensional gel electrophoresis. Brief Funct Genomic Proteomic 6(1):70–75

    Article  PubMed  CAS  Google Scholar 

  22. Martins-de-Souza D (2010) Is the word ‘biomarker’ being properly used by proteomics research in neuroscience? Eur Arch Psychiatry Clin Neurosci 260(7):561–562

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the tissue donors and their families. We also thank Manfred Bauer for brain preparation and Udo Rueb for Braak staging.

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martins-de-Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadarajulu, J., Schmitt, A., Falkai, P. et al. Differential expression of HINT1 in schizophrenia brain tissue. Eur Arch Psychiatry Clin Neurosci 262, 167–172 (2012). https://doi.org/10.1007/s00406-011-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-011-0216-4

Keywords

Navigation