Clomipramine-induced serum prolactin as a marker for serotonin and dopamine turnover: results of an open label study

  • Joachim CordesEmail author
  • Kai G. Kahl
  • Christian Werner
  • Uwe Henning
  • Gunnar Regenbrecht
  • Rolf Larisch
  • Christian Schmidt-Kraepelin
  • Johanna Thünker
  • Marcus W. Agelink
  • Stefan Löffler
  • Thomas Hohlfeld
  • Wolfgang Gaebel
  • Ansgar Klimke
Original Paper


Central nervous system (CNS) monoamine deficits have been linked to a number of pathological conditions such as major depressive disorder. Individual biological variations in 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) might account for the variation in responses of neurotransmitter systems observed after the administration of clomipramine. The prolactin response to clomipramine has been widely used to assess CNS functioning. This open label study investigates the prolactin response induced by clomipramine in the plasma of healthy volunteers and whether it is related to changes in monoamine metabolites. The effects of clomipramine challenge on prolactin, 5-HIAA, HVA and MHPG were measured in 12 healthy volunteers. Samples were drawn directly before and 50 min after clomipramine infusion. A statistically significant increase in serum prolactin concentrations was measured in women 50 min after CMI infusion, but not in men. We found no significant increases in the serum monoamine metabolite concentrations 50 min after CMI infusion. Changes in HVA and 5-HIAA correlated statistically significantly and positively with the amount of prolactin release in the whole sample. Furthermore, positive correlations were found between ∆50–0 min 5-HIAA and ∆50–0 min HVA, although we did not find a correlation between ∆50–0 min prolactin and ∆50–0 min MHPG after clomipramine challenge. The pronounced prolactin release in healthy adult women might indicate a higher physiological sensitivity. Correlations between intra-individual changes in HVA, 5-HIAA and serum prolactin might indicate a central nervous effect of clomipramine on monoamine turnover. We conclude that monoamine changes in relation to prolactin response after clomipramine challenge may be suitable for characterizing the relationship between central serotonergic and dopaminergic function.


Clomipramine challenge Homovanillic acid Prolactin Monoamine metabolites Plasma 



The authors thank Klaus Krieger, Ph.D. and Margit Geisler for performing the biochemical analyses and Raimund Schneider, Ph.D. and Prof. Erlo Lehmann, Ph.D. for their helpful suggestions. The authors further acknowledge the essential statistical support provided by Wolfgang Meyer, Ph.D. (Zentralinstitut für angewandte Mathematik, Research Center Jülich). The present work was supported by the Pinguin Stiftung. This funding source had no influence on the study design, the collection, analysis and interpretation of data, the writing of the report or on the decision to submit the paper for publication.

Conflict of interest

Pharmaceutical companies were involved in supporting the speakers’ honoraria, travel funds, advisory panel payments and research grants. There were, however, no competing interests related directly to the subject of this paper. All authors declare that they have no conflicts of interest.


  1. 1.
    Ågren H, Terenius L (1985) Hallucinations in patients with major depression: interaction between CSF monoaminergic and endorphinergic indices. J Affect Disord 9:25–34PubMedCrossRefGoogle Scholar
  2. 2.
    Altamura AC, Dell’Osso B, Berlin HA, Buoli M, Bassetti R, Mundo E (2010) Duration of untreated illness and suicide in bipolar disorder: a naturalistic study. Eur Arch Psychiatry Clin Neurosci 260(5):385–391PubMedCrossRefGoogle Scholar
  3. 3.
    Amin F, Davidson M, Davis KL (1986) Homovanillic acid measurement in clinical research: a review of methodology. Neuropsychobiology 16(2–3):85–87Google Scholar
  4. 4.
    Anderson IM, Ware J, Daroza Davis JM, Cowen PJ (1992) Decreased 5-HT-mediated prolactin release in major depression. Br J Psychiatry 160:372–378PubMedCrossRefGoogle Scholar
  5. 5.
    Ben-Jonathan N, LaPensee CR, LaPensee EW (2008) What can we learn from rodents about prolactin in humans? Endocr Rev 29(1):1–41PubMedCrossRefGoogle Scholar
  6. 6.
    Ben-Jonathan N, Olivaer C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100:452–458PubMedCrossRefGoogle Scholar
  7. 7.
    Bressan RA, Erlandsson K, Spencer EP, Ell PJ, Pilowsky LS (2004) Prolactinemia is uncoupled from central D2/D3 dopamine receptor occupancy in amisulpride treated patients. Psychopharmacology 175(3):367–373PubMedCrossRefGoogle Scholar
  8. 8.
    Carpenter LL, Anderson GM, Siniscalchi JM, Chappell PB, Price LH (2003) Acute changes in cerebrospinal fluid 5-HIAA following oral paroxetine challenge in healthy humans. Neuropsychopharmacology 28(2):339–347PubMedCrossRefGoogle Scholar
  9. 9.
    Cordes J, Larisch R, Henning U, Thünker J, Werner C, Orozco G, Mayoral F, Rivas F, Auburger G, Tosch M, Rietschel M, Gaebel W, Müller H-W, Klimke A (2009) Abnormal neuroendocrine response to clomipramine in hereditary affective psychosis. Depression Anxiety 26(8):E111–E119CrossRefGoogle Scholar
  10. 10.
    Demarest KT, Riegle GD, Moore KE (1984) Adenohypophysial dopamine content during physiological changes in prolactin secretion. Endocrinology 115(6):2091–2097PubMedCrossRefGoogle Scholar
  11. 11.
    Elsworth JD, Redmond DE Jr, Roth RH (1982) Plasma and cerebrospinal fluid 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG) as indices of brain norepinephrine metabolism in primates. Brain Res 235:115–124PubMedCrossRefGoogle Scholar
  12. 12.
    Endicott J, Spitzer RL (1978) A diagnostic interview: The schedule for affective disorders and schizophrenia. Arch Gen Psychiatry 35:837–844PubMedGoogle Scholar
  13. 13.
    Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80(4):1523–1631PubMedGoogle Scholar
  14. 14.
    Fujita K, Kobayashi A, Suzuki S, Nakazawa K (1991) Changes of serotonin and catecholamines are related to pharmacokinetic alterations of clomipramine in rat brain. Eur J Pharmacol 12; 204(3):227–233Google Scholar
  15. 15.
    Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151(6):737–748PubMedCrossRefGoogle Scholar
  16. 16.
    Golden RN, Hsiao J, Lane E, Hicks R, Rogers S, Potter WZ (1989) The effects of intravenous clomipramine on neurohormones in normal subjects. J Clin Endocrinol Metab 68:632PubMedCrossRefGoogle Scholar
  17. 17.
    Golden RN, Hsiao J, Lane E, Ekstrom D, Rogers S, Hicks R, Potter WZ (1990) Abnormal neuroendocrine responsivity to acute intravenous clomipramine challenge in depressed patients. Psychiatry Res 31(1):39–47PubMedCrossRefGoogle Scholar
  18. 18.
    Golden RN, Ekstrom D, Brown TM, Ruegg R, Evans DL, Haggerty JJ Jr, Garbutt JC, Pedersen CA, Mason GA, Browne J, Carson SW (1992) Neuroendocrine effect of intravenous clomipramine in depressed patients and healthy subjects. Am J Psychiatry 149(9):1168–1175PubMedGoogle Scholar
  19. 19.
    Golden RN, Heine AD, Ekstrom RD, Bebchuk JM, Leatherman ME, Garbutt JC (2002) A longitudinal study of serotonergic function in depression. Neuropsychopharmacology 26(5):653–659PubMedCrossRefGoogle Scholar
  20. 20.
    Golden RN, Gilmore JH, Ekstrom RD, Knight B, Ruegg RG, Miller HL, Carson SW (1996) The effects of age, gender, and season on serotonergic function in healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 20(8):1315–1323PubMedCrossRefGoogle Scholar
  21. 21.
    Gupta RN, Whelton C (1992) Determination of plasma homovanillic acid by liquid chromatography with electrochemical detection. J Chromatogr 582:236–241PubMedCrossRefGoogle Scholar
  22. 22.
    Jokinen J, Nordström AL, Nordström P (2007) The relationship between CSF HVA/5-HIAA ratio and suicide intent in suicide attempters. Arch Suicide Res 11(2):187–192PubMedCrossRefGoogle Scholar
  23. 23.
    Kapur S, Langlois X, Vinken P, Megens AA, De Coster R, Andrews JS (2002) The differential effects of atypical antipsychotics on prolactin elevation are explained by their differential blood-brain disposition: a pharmacological analysis in rats. J Pharmacol Exp Ther 302(3):1129–1134PubMedCrossRefGoogle Scholar
  24. 24.
    Kemp AH, Gordon E, Rush AJ, Williams LM (2008) Improving the prediction of treatment response in depression: integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectr 13(12):1066–1086PubMedGoogle Scholar
  25. 25.
    Larisch R, Klimke A, Hamacher K, Henning U, Estalji S, Hohlfeld T, Vosberg H, Tosch M, Gaebel W, Coenen HH, Müller-Gärtner HW (2003) Influence of synaptic serotonin level on [18F]altanserin binding to 5HT2 receptors in man. Behav Brain Res 17; 139(1-2):21–9Google Scholar
  26. 26.
    MacQueen GM (2009) (2009) Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder. J Psychiatry Neurosci 34(5):343–349PubMedGoogle Scholar
  27. 27.
    Mann JJ, Currier D (2007) A review of prospective studies of biologic predictors of suicidal behavior in mood disorders. Arch Suicide Res 11(1):3–16PubMedCrossRefGoogle Scholar
  28. 28.
    Markianos M, Hatzimanolis J, Lykouras L (2002) Serotonergic and dopaminergic neuroendocrine responses of male depressive patients before and after a therapeutic ECT course. Eur Arch Psychiatry Clin Neurosci 252(4):172–176PubMedGoogle Scholar
  29. 29.
    McBride PA, Tierney H, DeMeo M, Chen JS, Mann JJ (1990) Effects of age and gender on CNS serotonergic responsivity in normal adults. Biol Psychiatry 15; 27(10):1143–55Google Scholar
  30. 30.
    Minegishi A, Ishizaki T (1984) Determination of free 3-Methoxy-4-Hydroxyphenylglycol with several other monoamine metabolites in plasma by high-performance liquid chromatography with ampherometric detection. J Chromatogr 311:51–57PubMedCrossRefGoogle Scholar
  31. 31.
    Millan MJ, Gobert A, Lejeune F, Newman-Tancredi A, Rivet JM, Auclair A, Peglion JL (2001) S33005, a novel ligand at both serotonin and norepinephrine transporters: I. Receptor binding, electrophysiological, and neurochemical profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 298(2):565–580PubMedGoogle Scholar
  32. 32.
    Mitani H, Shirayama Y, Yamada T, Kawahara R (2006) Plasma levels of homovanillic acid, 5-hydroxyindoleacetic acid and cortisol, and serotonin turnover in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 30(3):531–534PubMedCrossRefGoogle Scholar
  33. 33.
    Mitchell PB, Smythe GA (1991) Endocrine and amine responses to D, L-fenfluramine in normal subjects. Psychiatry Res 39(2):141–153PubMedCrossRefGoogle Scholar
  34. 34.
    Palencia G, Rios C, Sotelo J (2001) Clomipramine increases the striatal concentrations of dopamine and homovanillic acid in rats chronically consuming alcohol. J Stud Alcohol 62(6):724–729PubMedGoogle Scholar
  35. 35.
    Pompili M, Serafini G, Innamorati M, Möller-Leimkühler AM, Giupponi G, Girardi P, Tatarelli R, Lester D (2010) The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur Arch Psychiatry Clin Neurosci 260(8):583–600PubMedCrossRefGoogle Scholar
  36. 36.
    Ravna AW, Sylte I, Dahl SG (2009) Structure and localisation of drug binding sites on neurotransmitter transporters. J Mol Model 15(10):1155–1164PubMedCrossRefGoogle Scholar
  37. 37.
    Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359PubMedCrossRefGoogle Scholar
  38. 38.
    Sallee FR, Vrindavanam NS, Deas-Nesmith D, Carson SW, Sethuraman G (1997) Pulse intravenous clomipramine for depressed adolescents: double-blind, controlled trial. Am J Psychiatry 154(5):668–673PubMedGoogle Scholar
  39. 39.
    Sallee FR, Vrindavanam NS, Deas-Nesmith D, Odom AM, Carson SW, Sethuraman G (1998) Parenteral clomipramine challenge in depressed adolescents: mood and neuroendocrine response. Biol Psychiatry 1; 44(7):562–7Google Scholar
  40. 40.
    Santiago M, Matarredona ER, Machado A, Cano J (1998) Influence of serotoninergic drugs on in vivo dopamine extracellular output in rat striatum. J Neurosci Res 52(5):591–598PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma R, Javaid JI, Janicak P, Faull K, Comaty J, Davis JM (1989) Plasma and CSF HVA before and after pharmacological treatment. Psychiatry Res 28(1):97–104PubMedCrossRefGoogle Scholar
  42. 42.
    Smith DF, Geday J (2001) PET neuroimaging of clomipramine challenge in humans: focus on the thalamus. Brain Res (16) 892(1):193-7Google Scholar
  43. 43.
    Stanley M, Traskman-Bendz L, Dorovini-Zis K (1985) Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci 7;37(14):1279-86Google Scholar
  44. 44.
    Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60(4):386–391PubMedCrossRefGoogle Scholar
  45. 45.
    Sweeney D, Nelson C, Bowers M, Maas J, Heninger G (1978) Delusional versus non-delusional depression. Neurochemical differences. Lancet 100–101Google Scholar
  46. 46.
    Umene-Nakano W, Yoshimura R, Ueda N, Suzuki A, Ikenouchi-Sugita A, Hori H, Otani K, Nakamura J (2009) Predictive factors for responding to sertraline treatment: views from plasma catecholamine metabolites and serotonin transporter polymorphism. J Psychopharmacol PMID:19825907Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Joachim Cordes
    • 1
    Email author
  • Kai G. Kahl
    • 2
  • Christian Werner
    • 3
  • Uwe Henning
    • 1
  • Gunnar Regenbrecht
    • 1
  • Rolf Larisch
    • 4
  • Christian Schmidt-Kraepelin
    • 1
  • Johanna Thünker
    • 1
  • Marcus W. Agelink
    • 5
  • Stefan Löffler
    • 6
  • Thomas Hohlfeld
    • 7
  • Wolfgang Gaebel
    • 1
  • Ansgar Klimke
    • 6
  1. 1.Department of Psychiatry and Psychotherapy, Medical FacultyHeinrich-Heine-UniversityDuesseldorfGermany
  2. 2.Department of Psychiatry, Social Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
  3. 3.Medical Department, Otsuka Pharma GmbHFrankfurtGermany
  4. 4.Department of Nuclear MedicineHeinrich-Heine-UniversityDüsseldorfGermany
  5. 5.Department of Psychiatry, Psychotherapy and PsychosomaticRuhr-University BochumHerfordGermany
  6. 6.Department of Psychiatry, PsychotherapyOffenbachGermany
  7. 7.Institut für Pharmakologie und Klinische PharmakologieHeinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations