Skip to main content
Log in

Therapeutic drug monitoring in neuropsychopharmacology: does it hold its promises?

  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

To produce its characteristic effects, a drug must be present in appropriate concentrations at its sites of action. The latter is not only a function of the dose administered, but also of the extent and rate of drug absorption, distribution, tissue binding, biotransformation, and excretion, which can vary markedly between individual patients due to differences in gender, age, morbidity, smoking or eating habits, differential expression of drug metabolising enzymes or drug transporters or other factors. Therefore drug concentrations in blood resulting after a given dose differ by tenfold or more between individual patients. For psychoactive drugs, animal studies have shown that plasma concentrations of psychotropic drugs correlate well with concentrations in the target organ, the brain. In the brain of patients treated with antipsychotic or antidepressant drugs clear-cut relationships were found between plasma concentrations of the drug and occupancy of dopamine receptors or serotonin uptake sites by positron emission tomography (PET). Monitoring concentrations of psychoactive drugs in plasma of patients, so called therapeutic drug monitoring (TDM), is therefore useful to adjust dosages for optimal “receptor” blockade. TDM is well established for mood stabilizers and anticonvulsant drugs. For other neuropsychiatric drugs, however, “routine” TDM is rare. Optimal target concentrations are unclear for many drugs, and the number of laboratories that use reliable methods to measure the low concentrations of the drugs within a single day is quite limited. Moreover, the use of TDM in pratice is far from optimal. The TDM group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP see http://www.agnp.de/) has published literature-based guidelines for optimal use of TDM in psychiatry. TDM can be most informative to solve problems underlying the treatment of an individual patient. It can be clarified if suggested non-compliance or insufficient response in spite of recommended doses is due to rapid metabolism of the drug. Moreover, many drug interactions have been detected by using TDM. In conclusion, TDM is a reliable tool to optimise psychopharmacotherapy. When used adequately it is helpful for many psychiatric patients and in many situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aravagiri M, Teper Y, Marder SR (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm Drug Dispos 20:369–377

    Article  PubMed  CAS  Google Scholar 

  2. Åsberg M, Cronholm B, Sjöqvist F, Tuck D (1970) Correlation of subjective side effects with plasma concentrations of nortriptyline. Br Med J 4:18–21

    PubMed  Google Scholar 

  3. Åsberg M, Cronholm B, Sjöqvist F, Tuck D (1971) Relationship between plasma level and therapeutic effect of nortriptyline. Br Med J 3:331–334

    PubMed  Google Scholar 

  4. Baldessarini RJ, Cohen BM, Teicher MH (1998) Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry 45:79–91

    Google Scholar 

  5. Bauer M, Whybrow PC, Angst J, Versiani M, Möller HJ (2002) World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, Part 1: acute, continuation treatment of major depressive disorder. World J Biol Psychiatry 3:5–43

    Article  PubMed  Google Scholar 

  6. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, Kuss HJ, Laux G, Müller-Oerlinghausen B, Rao ML, Riederer P, Zernig G (2004) The AGNP-TDM expert group consensus guidelines: Therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 37:243–265

    Article  PubMed  CAS  Google Scholar 

  7. Bengtsson F (2004) Therapeutic drug monitoring of psychotropic drugs TDM “nouveau”. Ther Drug Monit 26:145–151

    Article  PubMed  Google Scholar 

  8. Burke MJ, Preskorn SH (1999) Therapeutic drug monitoring of antidepressants. Cost implications and relevance to clinical practice. Clin Pharmacokinet 37:147–165

    Article  PubMed  CAS  Google Scholar 

  9. Correll CU, Malhotra AK, Kaushik S, McMeniman M, Kane JM (2003) Early prediction of antipsychotic response in schizophrenia. Am J Psychiatry 160:2063–2065

    Article  PubMed  Google Scholar 

  10. DeVane CL, Boulton DW, Miller LF, Miller RL (1999) Pharmacokinetics of trazodone and its major metabolite m-chlorophenylpiperazine in plasma and brain of rats. Int J Neuropsychopharmcol 2:17–23

    Article  CAS  Google Scholar 

  11. Dolder CR, Lacro JP, Dunn LB, Jeste DV (2002) Antipsychotic medication adherence: is there a difference between typical and atypical agents? Am J Psychiatry 59:103–108

    Article  Google Scholar 

  12. Farde L, Nordström AL, Wiesel F-A, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  13. Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    PubMed  CAS  Google Scholar 

  14. Gaertner I, Gaertner HJ, Vonthein R, Dietz K (2001) Therapeutic drug monitoring of clozapine in relapse prevention: a five-year prospective study. J Clin Psychopharmacol 21:305–310

    Article  PubMed  CAS  Google Scholar 

  15. Glotzbach RK, Preskorn SH (1982) Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. Psychopharmacology 78:25–27

    Article  PubMed  CAS  Google Scholar 

  16. Gründer G, Siessmeier T, Piel T, Vernaleken I, Buchholz H-G, Zhou Y, Hiemke C, Wong DF, Rösch F, Bartenstein P (2003) Quantification of D2-like dopamine receptors in human brain with [18F]desmethoxyfallypride. J Nucl Med 44:109–116

    PubMed  Google Scholar 

  17. Gutteck U, Rentsch KM (2003) Therapeutic drug monitoring of 13 antidepressant and five neuroleptic drugs in serum with liquid chromatography-electrospray ionization mass spectrometry. Clin Chem Lab Med 41:1571–1579

    Article  PubMed  CAS  Google Scholar 

  18. Härtter S, Hermes B, Hiemke C (1995) Automated determination of trimipramine and N-desmethyl-trimipramine in human plasma or serum by HPLC with on-line solid phase extraction. J Liq Chromatogr 18:3495–3505

    Article  Google Scholar 

  19. Härtter S, Hiemke C (1992) Column switching and high-performance liquid chromatography in the analysis of amitriptyline, nortriptyline and hydroxylated metabolites in human plasma or serum. J Chromatogr 578(2):273–282

    Article  PubMed  Google Scholar 

  20. Härtter S, Weigmann H, Hiemke C (2000) Automated determination of reboxetine by high-performance liquid chromatography with column-switching and ultraviolet detection. J Chromatogr B 740:135–140

    Article  Google Scholar 

  21. Hiemke C, Dragicevic A, Gründer G, Härtter S, Sachse J, Vernaleken I, Müller MJ (2004) Therapeutic monitoring of new antipsychotic drugs. Ther Drug Monit 26:156–160

    Article  PubMed  CAS  Google Scholar 

  22. Hiemke C, Dragicevic A, Gründer G, Härtter S, Sachse J, Vernaleken I, Müller MJ (2004) Therapeutic monitoring of new antipsychotic drugs. Ther Drug Monit 26(2):156–160

    Article  PubMed  CAS  Google Scholar 

  23. Jaquenoud Sirot E, van der Velden JW, Rentsch K, Eap CB, Baumann P (2006) Therapeutic drug monitoring and pharmacogenetic tests as tools in pharmacovigilance. Drug Saf 29:735–768

    Article  PubMed  Google Scholar 

  24. Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P (2000) A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 57:553–559

    Article  PubMed  CAS  Google Scholar 

  25. Kapur S, Zipursky RB, Remington G, Jones C, DaSilva J, Wilson AA et al (1998) 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 155:921–928

    PubMed  CAS  Google Scholar 

  26. Kirchherr H, Kühn-Velten WN (2006) Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: a multi-level, single-sample approach. J Chromatogr B 843:100–113

    Article  CAS  Google Scholar 

  27. Laux G, Riederer P (1992) Plasmaspiegelbestimmung von Psychopharmaka: Therapeutisches Drug - Monitoring Versuch einer ersten Standortbestimmung. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  28. Leucht S, Busch R, Kissling W, Kane JM (2007) Early prediction of antipsychotic nonresponse among patients with schizophrenia. J Clin Psychiatry 68:352–360

    Article  PubMed  CAS  Google Scholar 

  29. Lundmark J, Bengtsson F, Nordin C, Reis M, Walinder J (2000) Therapeutic drug monitoring of selective serotonin reuptake inhibitors influences clinical dosing strategies and reduces drug costs in depressed elderly patients. Acta Psychiatr Scand 101:354–359

    Article  PubMed  CAS  Google Scholar 

  30. Mann K, Hiemke C, Lotz J, Schmidt LG, Lackner KJ, Bates DW (2006) Appropriateness of plasma level determinations for lithium and valproate in routine care of psychiatric inpatients with affective disorders. J Clin Psychopharmacol 26:671–673

    Article  PubMed  Google Scholar 

  31. Mann K, Hiemke C, Schmidt LG, Bates DW (2006) Appropriateness of therapeutic drug monitoring for antidepressants in routine psychiatric inpatient care. Ther Drug Monit 28:83–88

    Article  PubMed  Google Scholar 

  32. Medori R, Mannaert E, Gründer G (2006) Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 16:233–240

    Article  PubMed  CAS  Google Scholar 

  33. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161(5):826–835

    Article  PubMed  Google Scholar 

  34. Müller MJ, Dragicevic A, Fric M, Gaertner I, Grasmäder K, Härtter S, Hermann E, Kuss HJ, Laux G, Oehl W, Rao ML, Rollmann N, Weigmann H, Weber-Labonte M, Hiemke C (2003) Therapeutic drug monitoring of tricyclic antidepressants: How does it work under clinical conditions. Pharmacopsychiatry 36:98–104

    Article  PubMed  Google Scholar 

  35. Müller MJ, Regenbogen B, Härtter S, Eich FX, Hiemke C (2007) Therapeutic drug monitoring for optimzing amisulpride therapy in patients with schizophrenia. J Psychiatr Res 41:673–679

    Article  PubMed  Google Scholar 

  36. Nordström A-L, Farde L, Wiesel F-A, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  PubMed  Google Scholar 

  37. Preskorn SH, Burke MJ, Fast GA (1993) Therapeutic drug monitoring: principles and practice. Ther Drug Monit 16:611–641

    CAS  Google Scholar 

  38. Preskorn SH, Fast GA (1991) Therapeutic drug monitoring for antidepressants: efficacy, safety, and cost effectiveness. J Clin Psychiatry 52(Suppl):23–33

    PubMed  Google Scholar 

  39. Preskorn SH, Jerkovich GS (1990) Central nervous system toxicity of tricyclic antidepressants: phenomenology, course, risk factors, and role of therapeutic drug monitoring. J Clin Psychopharmacol 10:88–95

    Article  PubMed  CAS  Google Scholar 

  40. Rice DP (1999) The economic impact of schizophrenia. J Clin Psychiatry 60:4–6

    PubMed  Google Scholar 

  41. Sachse J, Härtter S, Hiemke C (2005) Automated determination of ziprasidone by HPLC with column switching and spectrophotometric detection. Ther Drug Monit 27:158–162

    Article  PubMed  CAS  Google Scholar 

  42. Sachse J, Härtter S, Weigmann H, Hiemke C (2003) Automated determination of amisulpride by liquid chromatography with column switching and spectrophotometric detection. J Chromatogr B 784:405–410

    Article  CAS  Google Scholar 

  43. Sachse J, Köller J, Härtter S, Hiemke C (2005) Automated analysis of quetiapine and other antipsychotic drugs in human blood by high performance-liquid chromatography with column-switching and spectrophotometric detection. J Chromatogr B 830:342–348

    Article  CAS  Google Scholar 

  44. Simmons SA, Perry PJ, Rickert ED, Browne JL (1985) Cost-benefit analysis of prospective pharmacokinetic dosing of nortriptyline in depressed inpatients. J Affective Disord 8:47–53

    Article  CAS  Google Scholar 

  45. Szegedi A, Müller MJ, Anghelescu I, Klawe C, Kohnen R, Benkert O (2003) Early improvement under mirtazapine and paroxetine predicts later stable response and remission with high sensitivity in patients with major depression. J Clin Psychiatry 64:413–420

    Article  PubMed  CAS  Google Scholar 

  46. Talbot PS, Laruelle M (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12:503–511

    Article  PubMed  CAS  Google Scholar 

  47. Talvik M, Nordstrom AL, Larsen NE, Jucaite A, Cervenka S, Halldin C, Farde L (2004) A cross-validation study on the relationship between central D2 receptor occupancy and serum perphenazine concentration. Psychopharmacology (Berl) 175:148–153

    Article  CAS  Google Scholar 

  48. Ulrich S, Hiemke C, Laux G, Müller-Oerlinghausen B, Havemann-Reinecke U, Riederer P, Zernig G, Baumann P (2007) Value and actuality of the prescription information for therapeutic drug monitoring of psychopharmaceuticals: A comparison with the medico-scientific evidence. Pharmacopsychiatry 40:121–127

    Article  PubMed  CAS  Google Scholar 

  49. Ulrich S, Läuter J (2002) Comprehensive survey of the relationship between serum concentration and therapeutic effect of amitriptyline in depression. Clin Pharmacokinet 41:853–876

    Article  PubMed  CAS  Google Scholar 

  50. Ulrich S, Neuhof S, Braun V, Meyer FP (1998) Therapeutic window of serum haloperidol concentration in acute schizophrenia and schizoaffective disorder. Pharmacopsychiat 31:163–169

    CAS  Google Scholar 

  51. Vander Zwaag C, McGee M, McEvoy JP, Freudenreich O, Wilson WH, Cooper TB (1996) Response of patients with treatment-refractory schizophrenia to clozapine within three serum level ranges. Am J Psychiatry 153:1579–1584

    CAS  Google Scholar 

  52. Vernaleken I, Siessmeier T, Buchholz HG, Härtter S, Hiemke C, Stoeter P, Rösch F, Bartenstein P, Gründer G (2004) High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int J Neuropsychopharmacol 7:421–430

    Article  PubMed  CAS  Google Scholar 

  53. Vuille F, Amey M, Baumann P (1991) Use of plasma level monitoring of antidepressants in clinical practice. Towards an analysis of clinical utility. Pharmacopsychiatry 24:190–195

    PubMed  CAS  Google Scholar 

  54. Weigmann H, Härtter S, Hiemke C (1998) Automated determination of clomipramine and its major metabolites in human and rat serum by high-performance liquid chromatography with on-line column-switching. J Chromatogr B 710:227–233

    Article  CAS  Google Scholar 

  55. Weigmann H, Härtter S, Maehrlein S, Kiefer W, Kramer G, Dannhardt G, Hiemke C (2001) Simultaneous determination of olanzapine, clozapine and demethylated metabolites in serum by on-line column-switching high-performance liquid chromatography. J Chromatogr B 759:63–71

    Article  CAS  Google Scholar 

  56. Wyatt RJ, Henter I, Leary MC, Taylor E (1995) An economic evaluation of schizophrenia: 1991. Soc Psychiatr Epidemiol 30:196–205

    CAS  Google Scholar 

  57. Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (2002) Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27:248–259

    Article  PubMed  CAS  Google Scholar 

  58. Zernig G, Lechner T, Kramer-Reinstadler K, Hinterhuber H, Hiemke C, Saria A (2004) What the clinician still has to be reminded of. Ther Drug Monit 26:582

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Dr. Pierre Baumann and the TDM group of the AGNP for never ending efforts to improve the use of TDM in psychiatry since more than 10 years.

Disclosure C. Hiemke has received research grants and lecture fees from the pharmaceutical companies Astra-Zeneca, Boehringer Ingelheim, Eli Lilly, Lundbeck, Pfizer, Servier, Sanofi-Aventis and Wyeth. The author indicates that no potential conflict of interest exists with any commercial entity whose products are described in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hiemke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiemke, C. Therapeutic drug monitoring in neuropsychopharmacology: does it hold its promises?. Eur Arch Psychiatry Clin Neurosc 258 (Suppl 1), 21–27 (2008). https://doi.org/10.1007/s00406-007-1005-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-007-1005-y

Key words

Navigation