Skip to main content

Advertisement

Log in

Impairment of inhibitory control of the hypothalamic pituitary adrenocortical system in epilepsy

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract.

Excess comorbidity between depression and epilepsy proposes common pathophysiological patterns in both disorders. Neuroendocrine abnormalities were often observed in depression as well as in epilepsy. Lack of inhibitory control of the hypothalamic pituitary adrenocortical (HPA) system is a core feature of depression; main relay stations of this system are located in the amygdala and hippocampus, which are key regions for both disorders. Therefore we explored the feedback mechanism of the HPA system in epilepsy. In order to control for the impact of depression we focused on epilepsies without depression. We compared patients with epilepsy (subdivided by medication with or without hepatic enzyme inducing antiepileptic medication) with 16 healthy controls and 16 patients with unipolar major depression but without epilepsy. We observed a lack of inhibitory control of the HPA system in patients with epilepsy, also in the absence of enzyme inducing medication. An impact of the temporal lobe location of the epileptic focus could not be observed. Thus, epilepsies share with depression the deficiencies in the feedback mechanism of the HPA system, proposing common pathophysiological features of up to now unknown nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliashkevich AF, Yilmazer-Hanke D, Van Roost D, Mundhenk B, Schramm J, Blumcke I (2003) Cellular pathology of amygdala neurons in human temporal lobe epilepsy. Acta Neuropathol 106:99–106

    Article  PubMed  Google Scholar 

  2. Altshuler L, Rausch R, Delrahim S,Kay J, Crandall P (1999) Temporal lobe epilepsy, temporal lobectomy, and major depression. J Neuropsych Clin N 11:436–443

    CAS  Google Scholar 

  3. Angehagen M, Ben-Menachem E, Ronnback L, Hansson E (2003) Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem Res 28:333–340

    Article  CAS  PubMed  Google Scholar 

  4. Bardeleben VU, Holsboer F (1989) Cortisol response to a combined dexamethasone-human corticotrophin-releasing hormone challenge in patients with depression. J Neuroendocrinol 1:485–488

    Google Scholar 

  5. Bauer J, Isojarvi JI, Herzog AG, Reuber M, Polson D, Tauboll E, Genton P, van d’V, Roesing B, Luef GJ, Galimberti CA, van Parys J, Flugel D, Bergmann A, Elger CE (2002) Reproductive dysfunction in women with epilepsy: recommendations for evaluation and management. J Neurol Neurosurg Psychiatry 73:121–125

    Article  CAS  PubMed  Google Scholar 

  6. Benedetti MS (2000) Enzyme induction and inhibition by new antiepileptic drugs: a review of human studies. Fundam Clin Pharmacol 14:301–319

    CAS  PubMed  Google Scholar 

  7. Cacioppo JT, Berntson GG, Malarkey WB, Kiecolt-Glaser JK, Sheridan JF, Poehlmann KM, Burleson MH, Ernst JM, Hawkley LC, Glaser R (1998) Autonomic, neuroendocrine, and immune responses to psychological stress: the reactivity hypothesis. Ann NY Acad Sci 840:664–673

    CAS  PubMed  Google Scholar 

  8. Checkley S (1996) The neuroendocrinology of depression and chronic stress. Brit Med Bull 52:597–617

    CAS  PubMed  Google Scholar 

  9. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  CAS  PubMed  Google Scholar 

  10. Cramer JA, Ben Menachem E, French J (2001) Review of treatment options for refractory epilepsy: new medications and vagal nerve stimulation. Epilepsy Res 47:17–25

    Article  CAS  PubMed  Google Scholar 

  11. Davies JA (1995) Mechanisms of action of antiepileptic drugs. Seizure 4:267–271

    CAS  PubMed  Google Scholar 

  12. de Kloet ER (1995) Steroids, stability and stress. Front Neuroendocrin 16:416–425

    Article  CAS  Google Scholar 

  13. Dinan TG (2001) Psychoneuroendocrinology of mood disorders. Curr Opin Psychiat 14:51–55

    Article  Google Scholar 

  14. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829

    Article  CAS  PubMed  Google Scholar 

  15. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420–444

    PubMed  Google Scholar 

  16. Duclos M, Corcuff JB, Roger P, Tabarin A (1999) The dexamethasone-suppressed corticotrophin-releasing hormone stimulation test in anorexia nervosa. Clin Endocrinol 51:725–731

    Article  CAS  Google Scholar 

  17. Elger CE, Schmidt D (1999) Arzneimittel auf einen Blick. In: Schmidt D, Elger CE (eds) Praktische Epilepsiebehandlung. Praxisorientierte Diagnose und Differentialdiagnose, rationale Therapiestrategien und handlungsorientierte Leitlinien. Georg Thieme Verlag, pp 47–57

  18. Fassbender K, Schmidt R, Mossner R, Kischka U, Kuhnen J, Schwartz A, Hennerici M (1998) Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis—association with cerebral inflammation. Arch of Neurol 55:66–72

    Article  CAS  Google Scholar 

  19. French JA, Gidal BE (2000) Antiepileptic drug interactions. Epilepsia 41(S8):S30–S36

    CAS  Google Scholar 

  20. Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, Groll C, Jager, Leinsinger G, Hahn K, Moller HJ (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51:708–714

    Article  PubMed  Google Scholar 

  21. Gallagher BB (1987) Endocrine abnormalities in human temporal lobe epilepsy. Yale J Biol Med 60:93–97

    CAS  PubMed  Google Scholar 

  22. George MS, Nahas Z, Bohning DE, Kozel FA, Anderson B, Chae JH, Lomarev, Denslow S, Li X,Mu C (2002) Vagus nerve stimulation therapy: a research update. Neurology 59:S56–S61

    PubMed  Google Scholar 

  23. George MS, Nahas Z, Bohning DE, Lomarev M, Denslow S, Osenbach R, Ballenger JC (2000a) Vagus nerve stimulation: A new form of therapeutic brain stimulation. CNS Spectrums 5:43–52

    Google Scholar 

  24. George MS, Sackeim HA, Marangell LB, Husain MM, Nahas Z, Lisanby, Ballenger JC, Rush AJ (2000b) Vagus nerve stimulation. A potential therapy for resistant depression? Psychiat Clin North America 23:757–783

    CAS  Google Scholar 

  25. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC (2000c) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 47:287–295

    Article  CAS  Google Scholar 

  26. Grasser A, Möller A, Backmund H, Yassouridis A, Holsboer F (1996) Heterogeneity of hypothalamic-pituitary-adrenal system response to a combined dexamethasone-CRH test in multiple sclerosis. Exp clin Endocr Diab 104:31–37

    CAS  Google Scholar 

  27. Harden CL (2002) The co-morbidity of depression and epilepsy: epidemiology, etiology, and treatment. Neurology 59:S48–S55

    CAS  PubMed  Google Scholar 

  28. Hatzinger M, Z’Brun A, Hemmeter U, Seifritz E, Baumann F, Hosboer-Trachsler E, Heuser I (1995) Hypothalamic-pituitaryadrenal system function in patients with Alzheimer’s disease. Neurobiol Aging 16:205–209

    Article  CAS  PubMed  Google Scholar 

  29. Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160:1726–1739

    Article  PubMed  Google Scholar 

  30. Henry TR (2002) Therapeutic mechanisms of vagus nerve stimulation. Neurology 59:S3–S14

    Google Scholar 

  31. Herman JP, Schafer KH, Sladek CD, Day R, Young EA, Akil H, Watson SJ (1989) Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons. Brain Res 501:235–246

    Article  CAS  PubMed  Google Scholar 

  32. Herzog AG (1989) A hypothesis to integrate partial seizures of temporal lobe origin and reproductive endocrine disorders. Epilepsy Res 3:151–159

    Article  CAS  PubMed  Google Scholar 

  33. Herzog AG (1999) Psychoneuroendocrine aspects of temporolimbic epilepsy. Part I Brain, reproductive steroids, and emotions. Psychosomatics 40:95–101

    CAS  PubMed  Google Scholar 

  34. Heuser I, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenalsystem regulation and psychopathology during amitryptiline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153:93–99

    CAS  PubMed  Google Scholar 

  35. Heuser I, Yassouridis A, Holsboer F (1994) The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiat Res 28:341–356

    Article  CAS  PubMed  Google Scholar 

  36. Holsboer F (1998) Current theories on the pathophysiology of mood disorders. In: Montgomery S, Halbreich U (eds) Pharmacotherapy of mood and cognition. American Psychiatric Press Inc

  37. Holsboer F (1999) Clinical neuroendocrinology. In: Charney DS, Nestler EJ, Bunny BS (eds) Neurobiology of mental illness. Oxford University Press 1999, pp 149–161

  38. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disorders 62:77–91

    Article  CAS  PubMed  Google Scholar 

  39. Holsboer F, Lauer C, Schreiber W, Krieg J (1995) Altered Hypothalamic-Pituitary-Adrenocortical Regulation in Healthy Subjects at High Familial Risk for Affective Disorders. Neuroendocrinology 62:340–347

    CAS  PubMed  Google Scholar 

  40. Holsboer F, von Bardeleben U, Wiedemann, K, Muller OA, Stalla GK (1987) Serial assessment of corticotropin-releasing hormone response after dexamethasone in depression. Implications for pathophysiology of DST nonsuppression. Biol Psychiatry 22:228–234

    Article  CAS  PubMed  Google Scholar 

  41. Holsboer F, Wiedemann K, Gerken A, Boll E (1986) The plasma dexamethasone variable in depression: test-retest studies and early biophase kinetics. Psychiat Res 17:97–103

    Article  CAS  Google Scholar 

  42. Holsboer-Trachsler E, Stohler R, Hatzinger M (1991) Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiat Res 38:163–171

    Article  CAS  Google Scholar 

  43. Huesgen G, Roos C, Kinkeldei J (2000) Medikamentenbestimmung mit Elektrospray Tandem-Massenspektroskopie. J Lab Med 24:14–19

    CAS  Google Scholar 

  44. Hundt W, Zimmermann U, Pottig M, Spring K, Holsboer F (2001) The combined dexamethasone-suppression/CRH-stimulation test in alcoholics during and after acute withdrawal. Alcoholism: Clin Exp Res 25:687–691

    Article  CAS  Google Scholar 

  45. Kudielka BM, Reinwald AK, Hellhammer DH, Kirschbaum C (1999) Psychological and endocrine responses to psychosocial stress and dexamethasone/corticotropin-releasing hormone in healthy postmenopausal women and young controls:The impact of age and a two-week estradiol-treatment. Neuroendocrinology 70:422–430

    Article  CAS  PubMed  Google Scholar 

  46. Kumpfel T, Then Bergh F, Friess E, Uhr, Yassouridis A, Trenkwalder C, Holsboer F (1999) Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releasing hormone test in patients with multiple sclerosis. Neuroendocrinology 70:431–438

    Article  CAS  PubMed  Google Scholar 

  47. Kunzel HE, Binder EB, Nickel T, Ising M, Fuchs B, Majer M, Pfennig A, Ernst G, Kern N, Schmid DA, Uhr M, Holsboer F, Modell S (2003) Pharmacological and nonpharmacological factors influencing hypothalamic-pituitary-adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex-CRH test. Neuropsychopharmacology 28:2169–2178

    CAS  PubMed  Google Scholar 

  48. Lammers CH, Garcia-Borreguero D, Schmider J, Gotthardt U, Dettling M, Holsboer F, Heuser IJ (1995) Combined Dexamethasone/Corticotropin-Releasing Hormone test in patients with schizophrenia and in normal controls: II. Biol Psychiatry 38:803–807

    Article  CAS  Google Scholar 

  49. McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731

    Article  CAS  PubMed  Google Scholar 

  50. McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann NY Acad Sci 933:265–277

    CAS  PubMed  Google Scholar 

  51. McEwen BS, Gould E, Sakai R (1992) The vulnerability of the hippocampus to protective and destructive effects of glucocorticoids in relation to stress. Brit J Psychiat 160:18–24

    Google Scholar 

  52. Miller DB, O’Callaghan JP (2002) Neuroendocrine aspects of the response to stress. Metabolism 51:5–10

    Article  CAS  Google Scholar 

  53. Modell S, Lauer CJ, Schreiber W, Huber J, Krieg JC, Holsboer F (1998) Hormonal response pattern in the combined Dex-CRH test is stable over time in subjects at high familial risk for affective disorders. Neuropsychopharmacol 18:253–262

    Article  CAS  Google Scholar 

  54. Piazzini A, Canevini MP, Maggiori G, Canger R (2001) Depression and anxiety in patients with epilepsy. Epilepsy Behav 2:481–489

    Article  PubMed  Google Scholar 

  55. Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiat Clin North America 21:293–307

    CAS  Google Scholar 

  56. Pritchard PB (1991) The effect of seizures on hormones. Epilepsia 32(S6):S46–S50

    PubMed  Google Scholar 

  57. Putignano P, Kaltsas GA, Satta MA, Grossman AB (1998) The effects of anti–convulsant drugs on adrenal function. Horm Metab Res 30:389–397

    CAS  PubMed  Google Scholar 

  58. Quiske A, Helmstaedter C, Lux S, Elger CE (2000) Depression in patients with temporal lobe epilepsy is related to mesial temporal sclerosis. Epilepsy Res 39:121–125

    Article  CAS  PubMed  Google Scholar 

  59. Rasmuson S, Andrew R, Nasman B, Seckl JR, Walker BR, Olsson T (2001) Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer’s disease. Biol Psychiatry 49:547–552

    Article  CAS  PubMed  Google Scholar 

  60. Robertson MM, Coppen A, Trimble MR (1986) The dexamethasone suppression test in medicated epileptic patients. Biol Psychiatry 21:225–228

    Article  CAS  PubMed  Google Scholar 

  61. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RKJ, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47:276–286

    Article  CAS  PubMed  Google Scholar 

  62. Rybakowski JK, Twardowska K (1999) The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiat Res 33:363–370

    Article  CAS  PubMed  Google Scholar 

  63. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  CAS  PubMed  Google Scholar 

  64. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7:284–301

    CAS  PubMed  Google Scholar 

  65. Schachter SC (2002) Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology 59:S15–S20

    Google Scholar 

  66. Schmider J, Lammers CH, Gotthardt U, Dettling M, Holsboer F, Heuser IJ (1995) Combined dexamethasone/corticotropin-releasing hormone test in acute and remitted manic patients, in acute depression, and in normal controls: I Biol Psychiatry 38:797–802

    Article  CAS  Google Scholar 

  67. Schreiber W, Lauer CJ, Krumrey K, Holsboer F, Krieg JC (1996) Dysregulation of the hypothalamic-pituitary-adrenocortical system in panic disorder. Neuropsychopharmacol 15:7–15

    Article  CAS  Google Scholar 

  68. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder, AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50:651–658

    Article  CAS  PubMed  Google Scholar 

  69. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Nat Acad Sci USA 93:3908–3913

    Article  CAS  PubMed  Google Scholar 

  70. Shukla GD, Srivastava ON, Katiyar BC, Joshi V, Mohan PK (1979) Psychiatric manifestations in temporal lobe epilepsy: a controlled study. Br J Psychiatry 135:411–417

    CAS  PubMed  Google Scholar 

  71. Sills GJ (2003) Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord 5:51–56

    PubMed  Google Scholar 

  72. Takeshita H, Kawahara R, Nagabuchi T, Mizukawa R, Hazama H (1986) Serum prolactin, cortisol and growth hormone concentrations after various epileptic seizures. Jap J Psychiat Neurol 40:617–623

    CAS  Google Scholar 

  73. Tecoma ES (1999) Oxcarbazepine. Epilepsia 40(S5):S37–S46

    CAS  PubMed  Google Scholar 

  74. Then Bergh F, Kumpfel T, Grasser A, Rupprecht R, Holsboer F, Trenkwalder C (2001) Combined treatment with corticosteroids and moclobemide favors normalization of hypothalamo-pituitary-adrenal axis dysregulation in relapsing-remitting multiple sclerosis: a randomized, double blind trial. J Clin Endocr Metab 86:1610–1615

    Article  PubMed  Google Scholar 

  75. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42(S3):8–12

    Article  PubMed  Google Scholar 

  76. Trimble MR, Mendez MF,Cummings JL (1997) Neuropsychiatric symptoms from the temporolimbic lobes. J Neuropsych Clin N 9:429–438

    CAS  Google Scholar 

  77. Vanitallie TB (2002) Stress: a risk factor for serious illness. Metabolism 51:40–45

    Article  CAS  PubMed  Google Scholar 

  78. Volk B, Meyer RP, von Lintig F, Ibach B, Knoth R (1995) Localization and characterization of cytochrome P450 in the brain. In vivo and in vitro investigations on phenytoin- and phenobarbital-inducible isoforms. Toxicol Lett 82–83:655–662

    Article  CAS  PubMed  Google Scholar 

  79. Whysner J, Ross PM, Williams GM (1996) Phenobarbital mechanistic data and risk assessment: enzyme induction, enhanced cell proliferation, and tumor promotion. Pharmacol Ther 71:153–191

    Article  CAS  PubMed  Google Scholar 

  80. Young EA, Spencer RL, McEwen BS (1990) Changes at multiple levels of the hypothalamo-pituitary adrenal axis following repeated electrically induced seizures. Psychoneuroendocrinol 15:165–172

    Article  CAS  Google Scholar 

  81. Zobel AW, Nickel T, Sonntag A, Uhr M,Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression: a prospective study. J Psychiat Res 35:83–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Zobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobel, A., Wellmer, J., Schulze-Rauschenbach, S. et al. Impairment of inhibitory control of the hypothalamic pituitary adrenocortical system in epilepsy. European Archives of Psychiatry and Clinical Neurosciences 254, 303–311 (2004). https://doi.org/10.1007/s00406-004-0499-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-004-0499-9

Key words

Navigation