Skip to main content
Log in

Compensatory strategies after an acute unilateral vestibulopathy: a prospective observational study

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

In case of an acute unilateral vestibulopathy (UVP), compensatory strategies such as restoration and adaptation will lead to a decrease in intensity of the symptoms. Although measurements of compensatory strategies are available, currently, an overview taking the different strategies into account is lacking. The objectives of this study are to explore compensatory strategies and to investigate the association between compensatory strategies and patient characteristics.

Methods

Restoration was objectified by the vestibulo-ocular reflex (VOR) gain on the video head impulse test, and adaptation—consisting of visual, multisensory, and behavioral substitution—was objectified by the Visual Vertigo Analog Scale (VVAS), Antwerp Vestibular Compensation Index (AVeCI), and Perez and Rey score (PR score), respectively. Adequate restoration and adaptation levels were interpreted as follows: VOR gain > 0.80, VVAS ≤ 40%, AVeCI > 0 and PR score ≤ 55.

Results

Sixty-two UVP patients, 34 men and 28 women, were included with an average age of 52.1 ± 17.3 years. At 10.5 ± 1.4 weeks after onset, 41.9% of the UVP patients reached adequate restoration levels and 58.1–86.9% reached adequate adaptation levels. Furthermore, significant associations were found between (1) restoration status and UVP etiology [Odds Ratio (OR) with 95% CI: 4.167 {1.353;12.828}] and balance performance (OR: 4.400 {1.258;15.386}), (2) visual sensory substitution status and perceived handicap (OR: 8.144 {1.644;40.395}), anxiety (OR: 10.000 {1.579;63.316}) and depression (OR: 16.667 {2.726;101.896}), and (3) behavioral substitution status and balance performance (OR: 4.143 {1.341;12.798}).

Conclusion

UVP patients with adequate compensatory strategies presented with better balance performance, lower perceived handicap, and lower anxiety and depression scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Peterka RJ (2018) Sensory integration for human balance control. Handb Clin Neurol 159:27–42. https://doi.org/10.1016/B978-0-444-63916-5.00002-1

    Article  PubMed  Google Scholar 

  2. Strupp M, Bisdorff A, Furman J, Hornibrook J, Jahn K, Maire R, Newman-Toker D, Magnusson M (2022) Acute unilateral vestibulopathy/vestibular neuritis: diagnostic criteria. J Vestib Res 32(5):389–406. https://doi.org/10.3233/VES-220201

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lacour M, Helmchen C, Vidal PP (2016) Vestibular compensation: the neuro-otologist’s best friend. J Neurol 263(Suppl 1):S54–S64. https://doi.org/10.1007/s00415-015-7903-4

    Article  PubMed  Google Scholar 

  4. Halmagyi GM, Chen L, MacDougall HG, Weber KP, McGarvie LA, Curthoys IS (2017) The video head impulse test. Front Neurol 8:258. https://doi.org/10.3389/fneur.2017.00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Travo C, Gaboyard-Niay S, Chabbert C (2012) Plasticity of Scarpa’s ganglion neurons as a possible basis for functional restoration within vestibular endorgans. Front Neurol 6(3):91. https://doi.org/10.3389/fneur.2012.00091. (PMID: 22685444; PMCID: PMC3368229)

    Article  Google Scholar 

  6. Herdman SJ (1998) Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol Head Neck Surg 119(1):49–54. https://doi.org/10.1016/S0194-5998(98)70195-0

    Article  CAS  PubMed  Google Scholar 

  7. Vibert N, Babalian A, Serafin M, Gasc JP, Mühlethaler M, Vidal PP (1999) Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations. Neuroscience 93(2):413–32. https://doi.org/10.1016/s0306-4522(99)00172-4. (PMID: 10465424)

    Article  CAS  PubMed  Google Scholar 

  8. Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13(1):27–30. https://doi.org/10.1097/00019052-200002000-00006. (PMID: 10719646)

    Article  CAS  PubMed  Google Scholar 

  9. Pavlou M, Davies RA, Bronstein AM (2006) The assessment of increased sensitivity to visual stimuli in patients with chronic dizziness. J Vestib Res 16(4–5):223–231

    PubMed  Google Scholar 

  10. Cousins S, Cutfield NJ, Kaski D, Palla A, Seemungal BM, Golding JF, Staab JP, Bronstein AM (2014) Visual dependency and dizziness after vestibular neuritis. PloS one 9(9):e105426. https://doi.org/10.1371/journal.pone.0105426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dannenbaum E, Chilingarian G, Fung J (2019) Validity and responsiveness of the visual vertigo analogue scale. J Neurol Phys Ther JNPT 43(2):117–121. https://doi.org/10.1097/NPT.0000000000000261

    Article  PubMed  Google Scholar 

  12. Macdougall HG, Curthoys IS (2012) Plasticity during vestibular compensation: the role of saccades. Front Neurol 28(3):21. https://doi.org/10.3389/fneur.2012.00021. (PMID: 22403569; PMCID: PMC3289127)

    Article  Google Scholar 

  13. Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M (2014) Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol Clin 44(1):49–57. https://doi.org/10.1016/j.neucli.2013.10.138. (Epub 2013 Nov 6. PMID: 24502905)

    Article  CAS  PubMed  Google Scholar 

  14. Matiñó-Soler E, Rey-Martinez J, Trinidad-Ruiz G, Batuecas-Caletrio A, Pérez Fernández N (2016) A new method to improve the imbalance in chronic unilateral vestibular loss: the organization of refixation saccades. Acta Otolaryngol 136(9):894–900. https://doi.org/10.3109/00016489.2016.1172730

    Article  PubMed  Google Scholar 

  15. Guajardo-Vergara C, Perez-Fernandez N (2020) A new and faster method to assess vestibular compensation: a cross-sectional study. Laryngoscope 130(12):E911–E917. https://doi.org/10.1002/lary.28505

    Article  PubMed  Google Scholar 

  16. Akin FW, Davenport MJ (2003) Validity and reliability of the motion sensitivity test. J Rehabil Res Dev 40(5):415–421. https://doi.org/10.1682/jrrd.2003.09.0415

    Article  PubMed  Google Scholar 

  17. Swamy Suman N, Kumar Rajasekaran A, Yuvaraj P, Pruthi N, Thennarasu K (2022) Measure of central vestibular compensation: a review. J Int Adv Otol 18(5):441–446. https://doi.org/10.5152/iao.2022.21207

    Article  PubMed  PubMed Central  Google Scholar 

  18. McDonnell MN, Hillier SL (2015) Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005397.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meldrum D, Jahn K (2019) Gaze stabilisation exercises in vestibular rehabilitation: review of the evidence and recent clinical advances. J Neurol 266(Suppl 1):11–18. https://doi.org/10.1007/s00415-019-09459-x

    Article  PubMed  Google Scholar 

  20. Sulway S, Whitney SL (2019) Advances in vestibular rehabilitation. Adv Otorhinolaryngol 82:164–169. https://doi.org/10.1159/000490285

    Article  PubMed  Google Scholar 

  21. Karabulut M, Van Laer L, Hallemans A, Vereeck L, Van Rompaey V, Viechtbauer W, Melliti A, van Stiphout L, Mohamad A, Pérez Fornos A, Guinand N, van de Berg R (2023) Chronic symptoms in patients with unilateral vestibular hypofunction: systematic review and meta-analysis. Front Neurol 14:1177314. https://doi.org/10.3389/fneur.2023.1177314

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vereeck L, Wuyts FL, Truijen S, De Valck C, Van de Heyning PH (2008) The effect of early customized vestibular rehabilitation on balance after acoustic neuroma resection. Clin Rehabil 22(8):698–713. https://doi.org/10.1177/0269215508089066. (PMID: 18678570)

    Article  PubMed  Google Scholar 

  23. Hall CD, Herdman SJ, Whitney SL, Cass SP, Clendaniel RA, Fife TD, Furman JM, Getchius TS, Goebel JA, Shepard NT, Woodhouse SN (2016) Vestibular rehabilitation for peripheral vestibular hypofunction: an evidence-based clinical practice guideline: from the American physical therapy association neurology section. J Neurol Phys Ther JNPT 40(2):124–155. https://doi.org/10.1097/NPT.0000000000000120

    Article  PubMed  Google Scholar 

  24. McGarvie LA, MacDougall HG, Halmagyi GM, Burgess AM, Weber KP, Curthoys IS (2015) The video head impulse test (vHIT) of semicircular canal function—age-dependent normative values of VOR gain in healthy subjects. Front Neurol 6:154. https://doi.org/10.3389/fneur.2015.00154

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alfarghal M, Algarni MA, Sinha SK, Nagarajan A (2022) VOR gain of lateral semicircular canal using video head impulse test in acute unilateral vestibular hypofunction: a systematic review. Front Neurol 13:948462. https://doi.org/10.3389/fneur.2022.948462

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frank AJ, Hoppes CW, Dunlap PM, Costa CM, Whitney SL (2022) Categorizing individuals based on the severity of Visual Vertigo Analogue Scale symptoms. J Vestib Res 32(5):433–441. https://doi.org/10.3233/VES-210131

    Article  PubMed  Google Scholar 

  27. Verbecque E, Wuyts FL, Vanspauwen R, Van Rompaey V, Van de Heyning P, Vereeck L (2021) The Antwerp Vestibular Compensation Index (AVeCI): an index for vestibular compensation estimation, based on functional balance performance. Eur Arch Oto-Rhino-Laryngol 278(6):1755–1763. https://doi.org/10.1007/s00405-020-06192-4

    Article  Google Scholar 

  28. Salah M, Van de Heyning P, De Hertogh W, Van Rompaey V, Vereeck L (2020) Clinical balance testing to screen for patients with vestibular disorders: a retrospective case-control study. Otol Neurotol 41(9):1258–1265. https://doi.org/10.1097/MAO.0000000000002757

    Article  PubMed  Google Scholar 

  29. WittmeyerCedervall L, Magnusson M, Karlberg M, Fransson PA, Nyström A, Tjernström F (2021) vHIT testing of vertical semicircular canals with goggles yield different results depending on which canal plane being tested. Front Neurol 12:692196. https://doi.org/10.3389/fneur.2021.692196

    Article  Google Scholar 

  30. Mahfuz MM, Millar JL, Schubert MC (2021) Repeated video head impulse testing in patients is a stable measure of the passive vestibulo-ocular reflex. J Otol 16(3):128–137. https://doi.org/10.1016/j.joto.2020.12.002

    Article  PubMed  Google Scholar 

  31. Jacobson GP, Newman CW (1990) The development of the Dizziness Handicap inventory. Arch Otolaryngol Head Neck Surg 116(4):424–427. https://doi.org/10.1001/archotol.1990.01870040046011

    Article  CAS  PubMed  Google Scholar 

  32. Vereeck L, Truijen S, Wuyts F, Van de Heyning PH (2006) Test-retest reliability of the Dutch version of the Dizziness Handicap Inventory. B-ENT 2(2):75–80

    CAS  PubMed  Google Scholar 

  33. Whitney SL, Wrisley DM, Brown KE, Furman JM (2004) Is perception of handicap related to functional performance in persons with vestibular dysfunction? Otol Neurotol 25(2):139–143. https://doi.org/10.1097/00129492-200403000-00010

    Article  PubMed  Google Scholar 

  34. Vereeck L, Dunlap PM, Vanspauwen R, Hendriks E, Whitney SL (2022) The reliability of the Dutch version of the vestibular activities avoidance instrument in persons with and without dizziness. J Vestib Res 32(5):423–431. https://doi.org/10.3233/VES-210108

    Article  PubMed  Google Scholar 

  35. Dunlap PM, Marchetti GF, Sparto PJ, Staab JP, Furman JM, Delitto A, Whitney SL (2021) Exploratory factor analysis of the vestibular activities avoidance instrument. JAMA Otolaryngol Head Neck Surg 147(2):144–150. https://doi.org/10.1001/jamaoto.2020.4203

    Article  PubMed  Google Scholar 

  36. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67(6):361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Article  CAS  PubMed  Google Scholar 

  37. Hess AS, Hess JR (2017) Understanding tests of the association of categorical variables: the Pearson chi-square test and Fisher’s exact test. Transfusion 57(4):877–879. https://doi.org/10.1111/trf.14057

    Article  PubMed  Google Scholar 

  38. Millar JL, Gimmon Y, Roberts D, Schubert MC (2020) Improvement after vestibular rehabilitation not explained by improved passive VOR gain. Front Neurol 11:79. https://doi.org/10.3389/fneur.2020.00079

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cohen HS, Sangi-Haghpeykar H, Ricci NA, Kampangkaew J, Williamson RA (2014) Utility of stepping, walking, and head impulses for screening patients for vestibular impairments. Otolaryngol Head Neck Surg 151(1):131–136. https://doi.org/10.1177/0194599814527724

    Article  PubMed  PubMed Central  Google Scholar 

  40. Allum JH, Honegger F (2013) Relation between head impulse tests, rotating chair tests, and stance and gait posturography after an acute unilateral peripheral vestibular deficit. Otol Neurotol 34(6):980–989. https://doi.org/10.1097/MAO.0b013e31829ce5ec

    Article  PubMed  Google Scholar 

  41. Chang TP, Schubert MC (2018) Association of the video head impulse test with improvement of dynamic balance and fall risk in patients with dizziness. JAMA Otolaryngol Head Neck Surg 144(8):696–703. https://doi.org/10.1001/jamaoto.2018.0650

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hermann R, Pelisson D, Dumas O, Urquizar C, Truy E, Tilikete C (2018) Are covert saccade functionally relevant in vestibular hypofunction? Cerebellum (London, England) 17(3):300–307. https://doi.org/10.1007/s12311-017-0907-0

    Article  CAS  PubMed  Google Scholar 

  43. Wettstein VG, Weber KP, Bockisch CJ, Hegemann SC (2016) Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy1. J Vestib Res 26(4):395–402. https://doi.org/10.3233/VES-160591

    Article  CAS  PubMed  Google Scholar 

  44. Cousins S, Kaski D, Cutfield N, Arshad Q, Ahmad H, Gresty MA, Seemungal BM, Golding J, Bronstein AM (2017) Predictors of clinical recovery from vestibular neuritis: a prospective study. Ann Clin Transl Neurol 4(5):340–346. https://doi.org/10.1002/acn3.386

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hilber P (2022) The role of the cerebellar and vestibular networks in anxiety disorders and depression: the internal model hypothesis. Cerebellum (London, England) 21(5):791–800. https://doi.org/10.1007/s12311-022-01400-9

    Article  PubMed  Google Scholar 

  46. Manso A, Ganança MM, Caovilla HH (2016) Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders. Braz J Otorhinolaryngol 82(2):232–241. https://doi.org/10.1016/j.bjorl.2015.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mempouo E, Lau K, Green F, Bowes C, Ray J (2021) Customised vestibular rehabilitation with the addition of virtual reality based therapy in the management of persistent postural-perceptual dizziness. J Laryngol Otol 135(10):887–891. https://doi.org/10.1017/S0022215121002127

    Article  CAS  PubMed  Google Scholar 

  48. Choi SY, Choi JH, Oh EH, Oh SJ, Choi KD (2021) Effect of vestibular exercise and optokinetic stimulation using virtual reality in persistent postural-perceptual dizziness. Sci Rep 11(1):14437. https://doi.org/10.1038/s41598-021-93940-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pavlou M, Bronstein AM, Davies RA (2013) Randomized trial of supervised versus unsupervised optokinetic exercise in persons with peripheral vestibular disorders. Neurorehabil Neural Repair 27(3):208–218. https://doi.org/10.1177/1545968312461715

    Article  PubMed  Google Scholar 

  50. Klatt BN, Carender WJ, Lin CC, Alsubaie SF, Kinnaird CR, Sienko KH, Whitney SL (2015) A conceptual framework for the progression of balance exercises in persons with balance and vestibular disorders. Phys Med Rehabil Int 2(4):1044 (Epub 2015 Apr 28. PMID: 27489886; PMCID: PMC4968039)

    PubMed  PubMed Central  Google Scholar 

  51. De Vestel C, De Hertogh W, Van Rompaey V, Vereeck L (2022) Comparison of clinical balance and visual dependence tests in patients with chronic dizziness with and without persistent postural-perceptual dizziness: a cross-sectional study. Front Neurol 13:880714. https://doi.org/10.3389/fneur.2022.880714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

University of Antwerp, ID 42186, Lien Van Laer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lien Van Laer.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Laer, L., Hallemans, A., Janssens de Varebeke, S. et al. Compensatory strategies after an acute unilateral vestibulopathy: a prospective observational study. Eur Arch Otorhinolaryngol 281, 743–755 (2024). https://doi.org/10.1007/s00405-023-08192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08192-6

Keywords

Navigation