Skip to main content
Log in

Rhinorrhea and increased chloride secretion through the CFTR chloride channel-a systematic review

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Allergic and non-allergic rhinorrhea in the forms of acute or chronic rhinosinusitis can mean a watery nasal discharge that is disabling. Primary objective was to review the evidence supporting the hypothesis that rhinorrhea is due to increased chloride secretion through the CFTR chloride channel.

Methods

The structure of the evidence review followed the EQUATOR Reporting Guidelines. Databases searched from inception to February 2022 included Pubmed, EMBASE and the Cochrane library using keywords “Rhinorrhea”, “chloride”, “chloride channel”, “CFTR” and “randomized controlled trial”. Quality assessment was according to the Oxford Centre for Evidence-based Medicine.

Results

49 articles were included. They included randomized controlled trials out of which subsets of data with the outcome of rhinorrhea on 6038 participants were analysed and in vitro and animal studies. The review revealed that drugs, which activate CFTR are associated with rhinorrhea. Viruses, which cause rhinorrhea like rhinovirus were found to activate CFTR. The chloride concentration in nasal fluid showed an increase in patients with viral upper respiratory tract infection. Increased hydrostatic tissue pressure, which is an activator of CFTR was observed in allergic upper airway inflammation. In this condition exhaled breath condensate chlorine concentration was found to be significantly increased. Drugs, which can reduce CFTR function including steroids, anti-histamines, sympathomimetic and anticholinergic drugs reduced rhinorrhea in randomized controlled trials.

Conclusions

A model of CFTR activation-mediated rhinorrhea explains the effectiveness of anticholinergic, sympathomimetic, anti-histamine and steroid drugs in reducing rhinorrhea and opens up avenues for further improvement of treatment by already known specific CFTR inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data availability is not applicable to this work.

References

  1. Eccles R (2005) Understanding the symptoms of the common cold and influenza. Lancet Infect Dis 5(11):718–725

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pfaar O, Raap U, Holz M, Hörmann K, Klimek L (2009) Pathophysiology of itching and sneezing in allergic rhinitis. Swiss Med Wkly 139(3–4):35–40

    PubMed  Google Scholar 

  3. Saint-Criq V, Gray MA (2017) Role of CFTR in epithelial physiology. Cell Mol Life Sci 74(1):93–115

    Article  CAS  PubMed  Google Scholar 

  4. Vitzthum C, Clauss WG (1848) Fronius M (2015) Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. Biochim Biophys Acta 11 Pt A:2942–2951

    Google Scholar 

  5. Solymosi EA, Kaestle-Gembardt SM, Vadász I, Wang L, Neye N, Chupin CJ et al (2013) Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema. Proc Natl Acad Sci U S A 110(25):E2308-23163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Howick J, Chalmers I, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, et al. “Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document)”.Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (Last Accessed 28.03.2023))

  7. McNamara JJ, McColley SA, Marigowda G, Liu F, Tian S, Owen CA et al (2019) Safety, pharmaco-kinetics, and pharmacodynamics of lumacaftor and ivacaftor combination therapy in children aged 2–5 years with cystic fibrosis homozygous for F508del-CFTR: an open-label phase 3 study. Lancet Respir Med 7:325–335

    Article  CAS  PubMed  Google Scholar 

  8. Dormer RL, Harris CM, Clark Z, Pereira MM, Doull IJ, Norez C et al (2005) Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 60:55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seftel AD (2004) Phosphodiesterase type 5 inhibitor differentiation based on selectivity, pharmacokinetic, and efficacy profiles. Clin Cardiol 27(I):I-14–I−19

    Article  Google Scholar 

  10. Tarran R, Button B, Picher M et al (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  CAS  PubMed  Google Scholar 

  11. Hossain MS, Salam MA, Rabbani GH, Biswas R, Mahalanabis D (2000) Vibrio cholerae O139 Bengal: a descriptive study. J Health Popul Nutr 18(1):27–32

    CAS  PubMed  Google Scholar 

  12. Vanthanouvong V, Roomans GM (2004) Methods for determining the composition of nasal fluid by X-ray microanalysis. Microsc Res Tech 63(2):122–128

    Article  CAS  PubMed  Google Scholar 

  13. Light RW, Macgregor MI, Luchsinger PC, Ball WC (1972) Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 77(4):507–513

    Article  CAS  PubMed  Google Scholar 

  14. Igarashi Y, Skoner DP, Doyle WJ, White MV, Fireman P, Kaliner MA (1993) Analysis of nasal secretions during experimental rhinovirus upper respiratory infections. J Allergy Clin Immunol 92(5):722–731

    Article  CAS  PubMed  Google Scholar 

  15. Brofeldt S, Mygind N, Sørensen CH, Readman AS, Marriott C (1986) Biochemical analysis of nasal secretions induced by methacholine, histamine, and allergen provocations. Am Rev Respir Dis 133(6):1138–1142

    CAS  PubMed  Google Scholar 

  16. Fogh-Andersen N, Altura BM, Altura BT, Siggaard-Andersen O (1995) Composition of interstitial fluid. Clin Chem 41(10):1522–1525

    Article  CAS  PubMed  Google Scholar 

  17. Berg A, Kirkebo A, Heyeraas KJ (1998) Micropuncture measurements of interstitial fluid pressure in rat nasal mucosa during early inflammatory reactions. J Appl Physiol 85(2):465–470

    Article  CAS  PubMed  Google Scholar 

  18. Davidsson A, Soderstrom M, Sjosward KN, Schmekel B (2007) Chlorine in breath condensate–a measure of airway affection in pollinosis? Respiration 74(2):184–191

    Article  CAS  PubMed  Google Scholar 

  19. Suzumura E, Takeuchi K (1992) Antigen reduces nasal transepithelial electric potential differences and alters ion transport in allergic rhinitis in vivo. Acta Otolaryngol 112:552–558

    Article  CAS  PubMed  Google Scholar 

  20. Wolk KE, Lazarowski ER, Traylor ZP et al (2008) Influenza A virus inhibits alveolar fluid clearance in BALB/c mice. Am J Respir Crit Care Med 178(9):969–976

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aeffner F, Abdulrahman B, Hickman-Davis JM, Janssen PM, Amer A, Bedwell DM et al (2013) Heterozygosity for the F508del mutation in the cystic fibrosis transmembrane conductance regulator anion channel attenuates influenza severity. J Infect Dis 208(5):780–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim JH, Kwon HJ, Jang YJ (2012) Effects of rhinovirus infection on the expression and function of cystic fibrosis transmembrane conduct-ance regulator and epithelial sodium channel in human nasal mucosa. Ann Allergy Asthma Immunol 108:182–187

    Article  CAS  PubMed  Google Scholar 

  23. Falsey AR, Walsh EE (2000) Respiratory syncytial virus infection in adults. Clin Microbiol Rev 13(3):371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wuchu F, Ma X, Que Y, Chen J, Chun YR (2022) Biphasic regulation of CFTR expression by ENaC in epithelial cells: The involvement of Ca2+-modulated cAMP production. Front Cell Dev Biol 10:781762

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S et al (2020) Executive summary of EPOS 2020 including integrated care pathways. Rhinology 58(2):82–111

    Article  CAS  PubMed  Google Scholar 

  26. Garay R (2004) Mechanisms of vasomotor rhinitis. Allergy 59(Suppl. 76):4–10

    Article  PubMed  Google Scholar 

  27. Eisenhut M (2006) Changes in ion transport in inflammatory disease. J Inflamm (Lond) 29(3):5

    Article  Google Scholar 

  28. White MV (1990) The role of histamine in allergic diseases. J Allergy Clin Immunol 86(4 Pt 2):599–605

    Article  CAS  PubMed  Google Scholar 

  29. Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH (1994) Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion. Am J Physiol 266(5 Pt 1):L493-501

    CAS  PubMed  Google Scholar 

  30. Billet A, Luo Y, Balghi H, Hanrahan JW (2013) Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 288(30):21815–21823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Philip G, Togias AG (1995) Nonallergic rhinitis. Pathophysiology and models for study. Eur Arch Otorhinolaryngol 252(1):27–32

    Article  Google Scholar 

  32. Philip G, Jankowski R, Baroody FM, Naclerio RM, Togias AG (1993) Reflex activation of nasal secretion by unilateral inhalation of cold dry air. Am Rev Respir Dis 148:1616–1622

    Article  CAS  PubMed  Google Scholar 

  33. Jepsen M, Graham S, Karp PH, Zabner J (2000) Effect of topical nasal pharmaceuticals on sodium and chloride transport by human airway epithelia. Am J Rhinol 14(6):405–409

    Article  CAS  PubMed  Google Scholar 

  34. De Sutter AIM, Lemiengre M, Campbell H (2003) Antihistamines for the common cold. Cochrane Database of Systematic Reviews Issue 3. Art. No.: CD001267. https://doi.org/10.1002/14651858.CD001267

  35. Seresirikachorn JK, Khattiyawittayakun L, Chitsuthipakorn W, Snidvongs K (2018) Antihistamines for treating rhinosinusitis: systematic review and meta-analysis of randomised controlled studies. Laryngol Otol 132(2):105–110

    Article  CAS  Google Scholar 

  36. AlBalawi ZH, Othman SS, Alfaleh K (2013) Intranasal ipratropium bromide for the common cold. Cochrane Database Syst Rev 6:CD008231

  37. Eccles R, Eriksson M, Garreffa S et al (2008) The nasal decongestant effect of xylometazoline in the common cold. Am J Rhinol 22:1–22

    Article  Google Scholar 

  38. Eccles R, Martensson K, Chen SC (2010) Effects of intranasal xylometazoline, alone or in combination with ipratropium, in patients with common cold. Curr Med Res Opin 26(4):889–899

    Article  CAS  PubMed  Google Scholar 

  39. Penagos M, Compalati E, Tarantini F, Baena-Cagnani CE, Passalacqua G, Canonica GW (2008) Efficacy of mometasone furoate nasal spray in the treatment of allergic rhinitis. Metaanalysis of randomized, double-blind, placebo-controlled, clinical trials. Allergy 63:1280–1291

    Article  CAS  PubMed  Google Scholar 

  40. Meltzer EO, Rickard KA, Westlund RE, Cook CK (2001) Onset of therapeutic effect of fluticasone propionate aqueous nasal spray. Ann Allergy Asthma Immunol 86(3):286–291

    Article  CAS  PubMed  Google Scholar 

  41. Eisenhut M (2018) The potential role of steroid-induced cerebral vasospasm in the pathogenesis of delayed cerebral injury in bacterial meningitis. Crit Care Med 46(8):1383–1384

    Article  PubMed  Google Scholar 

  42. Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S (2013) Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. Am J Physiol Lung Cell Mol Physiol 304:L582–L592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Londino JD, Lazrak A, Noah JW et al (2015) Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 29:2712–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsang LL, Chan LN, Liu CQ, Chan HC (2001) Effect of phenol red and steroid hormones on cystic fibrosis transmembrane conductance regulator in mouse endometrial epithelial cells. Cell Biol Int 25(10):1021–1024

    Article  CAS  PubMed  Google Scholar 

  45. Kaulbach HC, White MV, Igarashi Y, Hahn BK, Kaliner MA (1993) Estimation of nasal epithelial lining fluid using urea as a marker. J Allergy Clin Immunol 92(3):457–465

    Article  CAS  PubMed  Google Scholar 

  46. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line. J Physiol 503(2):333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv C, Zhang Y, Shen L (2018) Preliminary clinical effect evaluation of Resveratrol in adults with allergic rhinitis. Int Arch Allergy Immunol 175:231–236

    Article  CAS  PubMed  Google Scholar 

  48. Lee M, Kim S, Kwon OK, Oh SR, Lee HK, Ahn K (2009) Anti-inflammatory and anti-asthmatic effects of resveratrol, a poly phenolic stilbene, in a mouse model of allergic asthma. Int Immunopharmacol 9:418–424

    Article  PubMed  Google Scholar 

  49. Zhang Y, Yu B, Sui Y, Gao X, Yang H, Ma T (2014) Identification of resveratrol oligomers as inhibitors of cystic fibrosis transmembrane conductance regulator by high-throughput screening of natural products from Chinese medicinal plants. PLoS ONE 9(4):e94302

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Evidence search: Rhinorrhea. Ms Janine Hall. (7th February 2023). LUTON, UK: Bedfordshire Hospitals Library and Knowledge Service

Author information

Authors and Affiliations

Authors

Contributions

The author is the sole contributor to the content of this article.

Corresponding author

Correspondence to Michael Eisenhut.

Ethics declarations

Conflict of interest

The author did not receive support from any organization for the submitted work. The author has no relevant financial or non-financial interests to disclose.

Ethical approval

Data material and/or code availability are not applicable to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisenhut, M. Rhinorrhea and increased chloride secretion through the CFTR chloride channel-a systematic review. Eur Arch Otorhinolaryngol 280, 4309–4318 (2023). https://doi.org/10.1007/s00405-023-08067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08067-w

Keywords

Navigation