Skip to main content

Advertisement

Log in

Diagnostic value of myeloperoxidase and eosinophil cationic protein in nasal secretions for endotypes of chronic rhinosinusitis

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 14 August 2023

Abstract

Objectives

To explore associations between inflammatory endotypes and clinical presentations in CRS. To investigate the value of secretions myeloperoxidase (MPO) and eosinophilic cationic protein (ECP) detections in the diagnosis of endotypes of chronic rhinosinusitis (CRS), so as to provide guidance for the clinical application of MPO and ECP detection in secretions.

Methods

We collected clinical symptom scores from patients with CRS and examined the differences between endotypes in clinical features. Patients’ nasal secretions and polyps (or middle turbinate for control) were collected and their NEU number, EOS%, MPO and ECP levels were measured. Correlation analysis was performed for these biomarkers in secretions and tissues, respectively. Receiver operating characteristic curves were used to assess the predictive potential of the biomarkers mentioned above in nasal secretions.

Results

Patients with Eos+Neu+ and Eos+Neu−CRS scored highest in most clinical symptom scores, while Eos−Neu+ and Eos−Neu−CRS scored lowest. Correlation analysis showed that tissues NEU number was correlated with NEU number and MPO level in nasal secretions (R = 0.4088; 0.6613); tissues EOS % was correlated with EOS% and ECP level in nasal secretions (R = 0.2344; 0.5774). To diagnose Neu+CRS, the highest area under the curve (AUC) (0.8961) was determined for MPO in secretions; the highest AUC (0.7400) was determined for NEU number in secretions. To diagnose Eos+Neu−CRS from Eos−Neu−CRS in Neu−CRS, the highest AUC (0.8801) was determined for ECP in secretions.

Conclusions

Clinical presentations are directly associated with CRS endotypes. Measurement of MPO and ECP in nasal secretions is useful for the endotypes diagnosis of CRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data can be made available on request.

References

  1. Bachert C, Marple B, Schlosser RJ et al (2020) Adult chronic rhinosinusitis. Nat Rev Dis Primers 6(1):86

    Article  PubMed  Google Scholar 

  2. Khan A, Vandeplas G, Huynh T et al (2019) The Global Allergy and Asthma European Network (GALEN rhinosinusitis cohort: a large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 57(1):32–42

    Article  CAS  PubMed  Google Scholar 

  3. Van Zele T, Claeys S, Gevaert P et al (2006) Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61(11):1280–1289

    Article  PubMed  Google Scholar 

  4. Bachert C, Zhang N, Hellings PW et al (2018) Endotype-driven care pathways in patients with chronic rhinosinusitis. J Allergy Clin Immunol 141(5):1543–1551

    Article  PubMed  Google Scholar 

  5. Tomassen P, Vandeplas G, Van Zele T et al (2016) Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137(5):1449–1456

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Zhang N, Bo M et al (2016) Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 138(5):1344–1353

    Article  CAS  PubMed  Google Scholar 

  7. Stevens WW, Peters AT, Tan BK et al (2019) Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract 7(8):2812–2820

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tan BK, Klingler AI, Poposki JA et al (2017) Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol 139(2):699–703

    Article  PubMed  Google Scholar 

  9. Tyler MA, Russell CB, Smith DE et al (2017) Large-scale gene expression profiling reveals distinct type 2 inflammatory patterns in chronic rhinosinusitis subtypes. J Allergy Clin Immunol 139(3):1061–1064

    Article  CAS  PubMed  Google Scholar 

  10. Kim DW, Eun KM, Roh EY et al (2019) Chronic Rhinosinusitis without nasal polyps in asian patients shows mixed inflammatory patterns and neutrophil-related disease severity. Mediators Inflamm 2019:7138643

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liao B, Liu JX, Li ZY et al (2018) Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy 73(7):1459–1469

    Article  CAS  PubMed  Google Scholar 

  12. Lou H, Meng Y, Piao Y et al (2016) Cellular phenotyping of chronic rhinosinusitis with nasal polyps. Rhinology 54(2):150–159

    Article  PubMed  Google Scholar 

  13. Wei Y, Zhang J, Wu X et al (2020) Activated pyrin domain containing 3 (NLRP3) inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps (CRSwNP). J Allergy Clin Immunol 145(3):1002–1005

    Article  CAS  PubMed  Google Scholar 

  14. Aratani Y (2018) Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52

    Article  CAS  PubMed  Google Scholar 

  15. Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155(2):449–453

    Article  CAS  PubMed  Google Scholar 

  16. Nauseef WM (2014) Myeloperoxidase in human neutrophil host defence. Cell Microbiol 16(8):1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klebanoff SJ, Kettle AJ, Rosen H et al (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93(2):185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    Article  CAS  PubMed  Google Scholar 

  19. Marcucci F, Sensi LG, Migali E et al (2001) Eosinophil cationic protein and specific IgE in serum and nasal mucosa of patients with grass-pollen-allergic rhinitis and asthma. Allergy 56(3):231–236

    Article  CAS  PubMed  Google Scholar 

  20. Pipkorn U, Karlsson G, Enerback L (1988) The cellular response of the human allergic mucosa to natural allergen exposure. J Allergy Clin Immunol 82(6):1046–1054

    Article  CAS  PubMed  Google Scholar 

  21. Zhang N, Van Zele T, Perez-Novo C et al (2008) Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol 122(5):961–968

    Article  CAS  PubMed  Google Scholar 

  22. Bachert C, Zhang N, Holtappels G et al (2010) Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol 126(5):962–968

    Article  CAS  PubMed  Google Scholar 

  23. Fokkens WJ, Lund VJ, Hopkins C et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464

    PubMed  Google Scholar 

  24. Kuang FL (2020) Approach to patients with eosinophilia. Med Clin N Am 104(1):1–14

    Article  PubMed  Google Scholar 

  25. Chen J, Zhou Y, Zhang L et al (2017) Individualized treatment of allergic rhinitis according to nasal cytology. Allergy Asthma Immunol Res 9(5):403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xi Y, Deng YQ, Li HD et al (2022) Diagnostic value of a novel eosinophil cationic protein-myeloperoxidase test paper before and after treatment for allergic rhinitis. J Asthma Allergy 15:1005–1019

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yao Y, Yang C, Yi X et al (2020) Comparative analysis of inflammatory signature profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyposis. Biosci Rep 40(2):BSR20193101. https://doi.org/10.1042/BSR20193101

  28. Cao PP, Li HB, Wang BF et al (2009) Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol 124(3):478–484

    Article  CAS  PubMed  Google Scholar 

  29. Jang YJ, Lim JY, Kim S et al (2018) Enhanced interferon-beta response contributes to eosinophilic chronic rhinosinusitis. Front Immunol 9:2330

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin D, Lin H, Xiong X (2014) Expression and role of BAG-1 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation 37(6):1912–1918

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda K, Shiozawa A, Ono N et al (2013) Subclassification of chronic rhinosinusitis with nasal polyp based on eosinophil and neutrophil[J]. Laryngoscope 123(11):E1–E9

    Article  CAS  PubMed  Google Scholar 

  32. Shi LL, Xiong P, Zhang L et al (2013) Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy 68(1):101–109

    Article  CAS  PubMed  Google Scholar 

  33. Pothoven KL, Norton JE, Suh LA et al (2017) Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol 139(6):1966–1978

    Article  CAS  PubMed  Google Scholar 

  34. Khan MA, Ali ZS, Sweezey N et al (2019) Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) formation, and NET degradation. Genes (Basel) 10(3):183. https://doi.org/10.3390/genes10030183

    Article  CAS  PubMed  Google Scholar 

  35. Poposki JA, Klingler AI, Stevens WW et al (2022) Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 149(5):1666–1674

    Article  CAS  PubMed  Google Scholar 

  36. Chitsuthipakorn W, Seresirikachorn K, Sommer DD et al (2018) Endotypes of chronic rhinosinusitis across ancestry and geographic regions. Curr Allergy Asthma Rep 18(9):46

    Article  PubMed  Google Scholar 

  37. Sun DI, Joo YH, Auo HJ et al (2009) Clinical significance of eosinophilic cationic protein levels in nasal secretions of patients with nasal polyposis. Eur Arch Otorhinolaryngol 266(7):981–986

    Article  PubMed  Google Scholar 

  38. Kim KS, Won HR, Park CY et al (2013) Analyzing serum eosinophil cationic protein in the clinical assessment of chronic rhinosinusitis. Am J Rhinol Allergy 27(3):e75–e80

    Article  PubMed  Google Scholar 

  39. Kramer MF, Ostertag P, Pfrogner E et al (2000) Nasal interleukin-5, immunoglobulin E, eosinophilic cationic protein, and soluble intercellular adhesion molecule-1 in chronic sinusitis, allergic rhinitis, and nasal polyposis. Laryngoscope 110(6):1056–1062

    Article  CAS  PubMed  Google Scholar 

  40. Ruan JW, Zhao JF, Li XL et al (2021) Characterizing the neutrophilic inflammation in chronic rhinosinusitis with nasal polyps. Front Cell Dev Biol 9:793073

    Article  PubMed  PubMed Central  Google Scholar 

  41. Succar EF, Li P, Ely KA et al (2020) Neutrophils are underrecognized contributors to inflammatory burden and quality of life in chronic rhinosinusitis. Allergy 75(3):713–716

    Article  PubMed  Google Scholar 

  42. Lou H, Zhang N, Bachert C et al (2018) Highlights of eosinophilic chronic rhinosinusitis with nasal polyps in definition, prognosis, and advancement. Int Forum Allergy Rhinol 8(11):1218–1225

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lou H, Meng Y, Piao Y et al (2015) Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy 29(5):350–356

    Article  PubMed  Google Scholar 

  44. Delemarre T, Holtappels G, De Ruyck N et al (2021) A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 147(1):179–188

    Article  CAS  PubMed  Google Scholar 

  45. Ochkur SI, Kim JD, Protheroe CA et al (2012) A sensitive high throughput ELISA for human eosinophil peroxidase: a specific assay to quantify eosinophil degranulation from patient-derived sources. J Immunol Methods 384(1–2):10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Monteseirin J, Vega A (2008) Eosinophil cationic protein is not only a distinctive eosinophil protein. Thorax 63(2):185

    Article  CAS  PubMed  Google Scholar 

  47. Abu-Ghazaleh RI, Dunnette SL, Loegering DA et al (1992) Eosinophil granule proteins in peripheral blood granulocytes. J Leukoc Biol 52(6):611–618

    Article  CAS  PubMed  Google Scholar 

  48. Gurrola JN, Borish L (2017) Chronic rhinosinusitis: endotypes, biomarkers, and treatment response. J Allergy Clin Immunol 140(6):1499–1508

    Article  CAS  PubMed  Google Scholar 

  49. Wen W, Liu W, Zhang L et al (2012) Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol 129(6):1522–1528

    Article  CAS  PubMed  Google Scholar 

  50. Van Zele T, Gevaert P, Holtappels G et al (2010) Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol 125(5):1069–1076

    Article  PubMed  Google Scholar 

  51. Zheng W, Warner R, Ruggeri R et al (2015) PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther 353(2):288–298

    Article  CAS  PubMed  Google Scholar 

  52. Lu PC, Lee TJ, Huang CC et al (2021) Serum eosinophil cationic protein: a prognostic factor for early postoperative recurrence of nasal polyps. Int Forum Allergy Rhinol 11(4):766–772

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants in this study for their enthusiastic cooperation.

Funding

This research was supported by the National Natural Science Foundation of China (no. 82201250), Natural Science Foundation of Hubei Province (no. 2021CFB125) and Wuhan Dabai Xiaobai Technology Co., Ltd., China (2021HX0027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Chen, Ze-zhang Tao or Yu Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Guo, B., Zhang, W. et al. Diagnostic value of myeloperoxidase and eosinophil cationic protein in nasal secretions for endotypes of chronic rhinosinusitis. Eur Arch Otorhinolaryngol 280, 3707–3720 (2023). https://doi.org/10.1007/s00405-023-07903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07903-3

Keywords

Navigation