Skip to main content
Log in

Imaging of the human cochlea using micro-computed tomography before and after cochlear implantation: comparison with cone-beam computed tomography

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Analysis of cochlear structures and postoperative temporal bone (TB) imaging are gaining importance in the evaluation of cochlear implantation (CI°). Our aims were to explore the microarchitecture of human cochlea using micro-computed tomography (μCT), analyze electrode’s placement inside cochlea after CI°, and compare pre-/post-implantation μCT scans with cone-beam CT (CBCT) scans of same TBs.

Methods

Cadaveric TBs were scanned using μCT and CBCT then underwent CI° using straight electrodes. Thereafter, they underwent again μCT and CBCT-imaging.

Results

Ten TBs were studied. μCT allowed visualization of scala tympani, scala vestibuli, basilar membrane, osseous spiral lamina, crista fenestrae, and spiral ligament. CBCT showed same structures except spiral ligament and crista fenestrae. After CI°, μCT and CBCT displayed the scalar location and course of electrode array within the cochlea. There were 7 cases of atraumatic electrode insertion and 3 cases of insertion trauma: basilar membrane elevation, electrode foldover with limited migration into scala vestibuli, and electrode kinking with limited migration into scala vestibuli. Insertion trauma was not correlated with cochlea’s size or crista’s maximal height but with round window membrane diameter. Resolution of μCT was higher than CBCT but electrode artifacts were similar.

Conclusions

μCT was accurate in visualizing cochlear structures, and course and scalar position of electrode array inside cochlea with any possible trauma to cochlea or array. CBCT offers a good alternative to μCT in clinical practice for cochlear imaging and evaluation of CI°, with lower radiation and higher resolution than multi-slice CT. Difficulties related to non-traumatic CI° are multifactorial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mudry A, Mills M (2013) The early history of the cochlear implant: a retrospective. JAMA Otolaryngol Head Neck Surg 139(5):446–453

    Article  PubMed  Google Scholar 

  2. Lehnhardt E (1993) Intracochlear placement of cochlear implant electrodes in soft surgery technique. HNO 41(7):356–359

    CAS  PubMed  Google Scholar 

  3. Torres R, Kazmitcheff G, De Seta D, Ferrary E, Sterkers O, Nguyen Y (2017) Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur Arch Otorhinolaryngol 274(2):715–721

    Article  PubMed  Google Scholar 

  4. Eshraghi AA, Yang NW, Balkany TJ (2003) Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113(3):415–419

    Article  PubMed  Google Scholar 

  5. Roland PS, Wright CG, Isaacson B (2007) Cochlear implant electrode insertion: the round window revisited. Laryngoscope 117(8):1397–1402

    Article  PubMed  Google Scholar 

  6. Souter MA, Briggs RJ, Wright CG, Roland PS (2011) Round window insertion of precurved perimodiolar electrode arrays: how successful is it? Otol Neurotol 32(1):58–63

    Article  PubMed  Google Scholar 

  7. Hassepass F, Bulla S, Maier W, Laszig R, Arndt S, Beck R, Traser L, Aschendorff A (2014) The new mid-scala electrode array: a radiologic and histologic study in human temporal bones. Otol Neurotol 35(8):1415–1420

    Article  PubMed  Google Scholar 

  8. Postnov A, Zarowski A, De Clerck N, Vanpoucke F, Offeciers FE, Van Dyck D, Peeters S (2006) High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes. Acta Otolaryngol 126(5):467–474

    Article  CAS  PubMed  Google Scholar 

  9. Cushing SL, Daly MJ, Treaba CG, Chan H, Irish JC, Blaser S, Gordon KA, Papsin BC (2012) High-resolution cone-beam computed tomography: a potential tool to improve atraumatic electrode design and position. Acta Otolaryngol 132(4):361–368

    Article  PubMed  Google Scholar 

  10. Teymouri J, Hullar TE, Holden TA, Chole RA (2011) Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis. Otol Neurotol 32(6):980–986

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manrique-Huarte R, Zulueta-Santos C, Garaycochea O, Alvarez Linera-Alperi M, Manrique M (2020) Correlation between high-resolution computed tomography scan findings and histological findings in human vestibular end organs and surgical implications. Audiol Neurootol 25(1–2):42–49

    Article  PubMed  Google Scholar 

  12. Boyer E, Karkas A, Attye A, Lefournier V, Escude B, Schmerber S (2015) Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays. Otol Neurotol 36(3):422–429

    Article  PubMed  Google Scholar 

  13. Karkas A, Champfleur NM, Uziel A, Mondain M, Puel JL, Venail F (2018) Benefit of preoperative temporal Bone CT for atraumatic cochlear implantation. Otol Neurotol 39(3):e186–e194

    Article  PubMed  Google Scholar 

  14. Tang J, Tang X, Li Z, Liu Y, Tan S, Li H, Ke R, Wang Z, Gong L, Tang A (2018) Anatomical variations of the human cochlea determined from micro-CT and high-resolution CT imaging and reconstruction. Anat Rec (Hoboken) 301(6):1086–1095

    Article  PubMed  Google Scholar 

  15. Bevis N, Effertz T, Beutner D, Gueldner C (2021) Evaluation of artifacts of cochlear implant electrodes in cone beam computed tomography. Eur Arch Otorhinolaryngol 278(5):1381–1386

    Article  PubMed  Google Scholar 

  16. Marx M, Risi F, Escude B, Durmo I, James C, Lauwers F, Deguine O, Fraysse B (2014) Reliability of cone beam computed tomography in scalar localization of the electrode array: a radio histological study. Eur Arch Otorhinolaryngol 271(4):673–679

    Article  PubMed  Google Scholar 

  17. Zou J, Hannula M, Lehto K, Feng H, Lahelma J, Aula AS, Hyttinen J, Pyykko I (2015) X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hear Res 326:59–65

    Article  PubMed  Google Scholar 

  18. Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol 11(Suppl 1):27–33

    Article  PubMed  Google Scholar 

  19. Alexiades G, Dhanasingh A, Jolly C (2015) Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 36(5):904–907

    Article  PubMed  Google Scholar 

  20. Dietz A, Gazibegovic D, Tervaniemi J, Vartiainen VM, Lopponen H (2016) Insertion characteristics and placement of the Mid-Scala electrode array in human temporal bones using detailed cone beam computed tomography. Eur Arch Otorhinolaryngol 273(12):4135–4143

    Article  PubMed  Google Scholar 

  21. Wimmer W, Bell B, Huth ME, Weisstanner C, Gerber N, Kompis M, Weber S, Caversaccio M (2014) Cone beam and micro-computed tomography validation of manual array insertion for minimally invasive cochlear implantation. Audiol Neurootol 19(1):22–30

    Article  PubMed  Google Scholar 

  22. Frisch CD, Carlson ML, Lane JI, Driscoll CL (2015) Evaluation of a new mid-scala cochlear implant electrode using microcomputed tomography. Laryngoscope 125(12):2778–2783

    Article  PubMed  Google Scholar 

  23. Adunka O, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg 135(3):374–382

    Article  PubMed  Google Scholar 

  24. Gstoettner WK, Baumgartner WD, Franz P, Hamzavi J (1997) Cochlear implant deep-insertion surgery. Laryngoscope 107(4):544–546

    Article  CAS  PubMed  Google Scholar 

  25. Angeli RD, Lavinsky J, Setogutti ET, Lavinsky L (2017) The crista fenestra and its impact on the surgical approach to the scala tympani during cochlear implantation. Audiol Neurootol 22(1):50–55

    Article  PubMed  Google Scholar 

  26. Franz BK, Clark GM, Bloom DM (1987) Surgical anatomy of the round window with special reference to cochlear implantation. J Laryngol Otol 101(2):97–102

    Article  CAS  PubMed  Google Scholar 

  27. Carlson ML, Driscoll CL, Gifford RH, Service GJ, Tombers NM, Hughes-Borst BJ, Neff BA, Beatty CW (2011) Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 32(6):962–968

    Article  PubMed  PubMed Central  Google Scholar 

  28. Foggia MJ, Quevedo RV, Hansen MR (2019) Intracochlear fibrosis and the foreign body response to cochlear implant biomaterials. Laryngosc Investig Otolaryngol 4(6):678–683

    Article  Google Scholar 

Download references

Acknowledgements

We thank MED-EL Elektromedizinische Geraete GmbH, Innsbruck–Austria for freely providing the FLEX26 electrodes used in this study.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Karkas.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests whatsoever to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkas, A., Boureille, P., Laroche, N. et al. Imaging of the human cochlea using micro-computed tomography before and after cochlear implantation: comparison with cone-beam computed tomography. Eur Arch Otorhinolaryngol 280, 3131–3140 (2023). https://doi.org/10.1007/s00405-022-07811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07811-y

Keywords

Navigation