Skip to main content

Advertisement

Log in

The gut microbiome and allergic rhinitis; refocusing on the role of probiotics as a treatment option

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Introduction

In the industrialized world, the incidence of Allergic rhinitis (AR), often known as hay fever, and other allergic disorders continues to grow. Recent studies have suggested environmental variables such as bacterial exposures as a potential reason for the rising prevalence of AR. With breakthroughs in our abilities to research the complex crosstalk of bacteria, the gut microbiomes' effect on human development, nutritional requirements, and immunologic disorders has become apparent

Methods

Three search engines, including Scopus, Medline, and PubMed, were searched for related published articles up to and including 1st July 2022.

Results

Several studies have investigated links between commensal microbiome alterations and the development of atopic diseases such as asthma and AR. Besides, studies using probiotics for treating AR suggest that they may alleviate symptoms and improve patient's quality of life.

Conclusion

Research on probiotics and synbiotics for AR suggests they may improve symptoms, quality of life, and laboratory indicators. A better treatment strategy with advantages for patients may be achieved using probiotics, but only if more detailed in vitro and in vivo investigations are conducted with more participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

It is not applicable.

References

  1. Pawankar R, Canonica G, Holgate S, Lockey R, Blaiss M (2011) World Allergy Organisation (WAO) white book on allergy. World Allergy Organisation, Wisconsin

    Google Scholar 

  2. Devereux G (2006) The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol 6(11):869–874

    Article  CAS  Google Scholar 

  3. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299(6710):1259–1260

    Article  CAS  Google Scholar 

  4. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848

    Article  CAS  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  Google Scholar 

  6. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J (2014) The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 25(5):428–438

    Article  Google Scholar 

  7. Lei J, Dong Y, Hou Q, He Y, Lai Y, Liao C et al (2022) Intestinal microbiota regulate certain meat quality parameters in chicken. Front Nutr 9:747705

    Article  Google Scholar 

  8. Lambrecht BN, Hammad H (2017) The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 18(10):1076–1083

    Article  CAS  Google Scholar 

  9. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  Google Scholar 

  10. Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 22(5):289–303

    Article  Google Scholar 

  11. Martinez-Guryn K, Leone V, Chang EB (2019) Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 26(3):314–324

    Article  CAS  Google Scholar 

  12. Tropini C, Earle KA, Huang KC, Sonnenburg JL (2017) The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21(4):433–442

    Article  CAS  Google Scholar 

  13. Angelakis E, Armougom F, Carrière F, Bachar D, Laugier R, Lagier JC et al (2015) A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS ONE 10(9):e0137784

    Article  Google Scholar 

  14. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX et al (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36(1):92–104

    Article  CAS  Google Scholar 

  15. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493

    Article  CAS  Google Scholar 

  16. Ding W, Meng Q, Dong G, Qi N, Zhao H, Shi S (2022) Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J. 17(3):e2100579

    Article  Google Scholar 

  17. Engevik MA, Versalovic J (2017) Biochemical features of beneficial microbes: foundations for therapeutic microbiology. Microbiol Spectr 5(5):2032–2086

  18. Russo E, Giudici F, Fiorindi C, Ficari F, Scaringi S, Amedei A (2019) Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front Immunol 10:2754

    Article  CAS  Google Scholar 

  19. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  Google Scholar 

  20. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24

    Article  CAS  Google Scholar 

  21. Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15(2):111–128

    Article  CAS  Google Scholar 

  22. Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M (2019) The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep 46(6):6353–6360

    Article  CAS  Google Scholar 

  23. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30(6):492–506

    Article  Google Scholar 

  24. Zhang F, Liu J, editors. Flavour Characteristics and Nutritional Value of Microbial Fermented Food. Indian Journal of Pharmaceutical Sciences; 2020: INDIAN PHARMACEUTICAL ASSOC KALINA, SANTA CRUZ EAST, MUMBAI, 00000, INDIA.

  25. Flach M, Diefenbach A (2015) Adipose tissue: ILC2 crank up the heat. Cell Metab 21(2):152–153

    Article  CAS  Google Scholar 

  26. Stecher B, Hardt W-D (2008) The role of microbiota in infectious disease. Trends Microbiol 16(3):107–114

    Article  CAS  Google Scholar 

  27. Meng Y, Wang C, Zhang L (2019) Recent developments and highlights in allergic rhinitis. Allergy 74(12):2320–2328

    Article  Google Scholar 

  28. Meng Y, Wang C, Zhang L (2020) Advances and novel developments in allergic rhinitis. Allergy 75(12):3069–3076

    Article  Google Scholar 

  29. DeShazo RD, Kemp SF, Corren J, Feldweg A (2018) Allergic rhinitis: Clinical manifestations, epidemiology, and diagnosis. Up to Date[updated 25 Jan 2018; cited 22 Aug 2019]

  30. Iranshahi N, Assar S, Amiri SM, Zafari P, Fekri A, Taghadosi M (2019) Decreased gene expression of Epstein-Barr Virus-Induced Gene 3 (EBI-3) may contribute to the pathogenesis of rheumatoid arthritis. Immunol Invest 48(4):367–377

    Article  CAS  Google Scholar 

  31. Liva GA, Karatzanis AD, Prokopakis EP (2021) Review of rhinitis: classification, types, pathophysiology. J Clin Med 10(14):3183

    Article  CAS  Google Scholar 

  32. Rajabinejad M, Asadi G, Ranjbar S, Varmaziar FR, Karimi M, Salari F et al (2022) The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy. Immunol Lett 245:69–78

    Article  CAS  Google Scholar 

  33. Greiner AN, Hellings PW, Rotiroti G, Scadding GK (2011) Allergic rhinitis. Lancet 378(9809):2112–2122

    Article  Google Scholar 

  34. Ceylan ME, Cingi C, Özdemir C, Kücüksezer UC, Akdis CA (2020) Pathophysiology of allergic rhinitis. All around the nose. Springer, New York, pp 261–296

    Google Scholar 

  35. Eifan AO, Durham SR (2016) Pathogenesis of rhinitis. Clin Exp Allergy 46(9):1139–1151

    Article  CAS  Google Scholar 

  36. Melvin T-AN, Ramanathan M Jr (2012) Role of innate immunity in the pathogenesis of allergic rhinitis. Curr Opin Otolaryngol Head Neck Surg 20(3):194–198

    Article  Google Scholar 

  37. Wang D-Y (2005) Risk factors of allergic rhinitis: genetic or environmental? Therap Clin Risk Manag 1(2):115

    Article  CAS  Google Scholar 

  38. Allaire JM, Crowley SM, Law HT, Chang S-Y, Ko H-J, Vallance BA (2018) The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 39(9):677–696

    Article  CAS  Google Scholar 

  39. Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E (2013) Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 132(3):e666–e676

    Article  Google Scholar 

  40. Kalliomäki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr 140(3):713s-s721

    Article  Google Scholar 

  41. Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279(1):70–89

    Article  CAS  Google Scholar 

  42. He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J et al (2021) MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci (Weinh). 8(9):2003535

    Article  CAS  Google Scholar 

  43. Stiemsma LT, Turvey SE (2017) Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin Immunol 13:3

    Article  Google Scholar 

  44. Di Gangi A, Di Cicco ME, Comberiati P, Peroni DG (2020) Go with your gut: The shaping of T-cell response by gut microbiota in allergic asthma. Front Immunol 11:1485

    Article  CAS  Google Scholar 

  45. Fujimura KE, Lynch SV (2015) Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17(5):592–602

    Article  CAS  Google Scholar 

  46. Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A et al (2018) Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients. Immunol Invest 47(6):632–642

    Article  CAS  Google Scholar 

  47. Invernizzi R, Lloyd CM, Molyneaux PL (2020) Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 160(2):171–182

    Article  CAS  Google Scholar 

  48. Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Babaie F, Mahdavi J et al (2022) Upregulation of unfolded protein response and ER stress–related IL-23 production in M1 macrophages from ankylosing spondylitis patients. Inflammation 45(2):665–676

  49. Zhou A, Lei Y, Tang L, Hu S, Yang M, Wu L et al (2021) Gut microbiota: the emerging link to lung homeostasis and disease. J Bacteriol 203(4):e00454–20

  50. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 12(4):843–850

    Article  CAS  Google Scholar 

  51. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166

    Article  CAS  Google Scholar 

  52. Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J et al (2018) Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 48(5):992-1005.e8

    Article  CAS  Google Scholar 

  53. Low JSY, Soh SE, Lee YK, Kwek KYC, Holbrook JD, Van der Beek EM et al (2017) Ratio of Klebsiella/Bifidobacterium in early life correlates with later development of paediatric allergy. Benef Microbes 8(5):681–695

    Article  CAS  Google Scholar 

  54. Candy DCA, Van Ampting MTJ, Oude Nijhuis MM, Wopereis H, Butt AM, Peroni DG et al (2018) A synbiotic-containing amino-acid-based formula improves gut microbiota in non-IgE-mediated allergic infants. Pediatr Res 83(3):677–686

    Article  CAS  Google Scholar 

  55. Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, Wahn U (1999) Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol 103(6):1173–1179

    Article  CAS  Google Scholar 

  56. Metchnikoff II (2004) The prolongation of life: optimistic studies. Springer Publishing Company, New York

    Google Scholar 

  57. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

  58. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10(suppl_1):S49–S66

    Article  Google Scholar 

  59. Levan SR, Stamnes KA, Lin DL, Panzer AR, Fukui E, McCauley K et al (2019) Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat Microbiol 4(11):1851–1861

    Article  CAS  Google Scholar 

  60. Barcik W, Pugin B, Brescó MS, Westermann P, Rinaldi A, Groeger D et al (2019) Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy 74(5):899–909

    Article  CAS  Google Scholar 

  61. Dev S, Mizuguchi H, Das AK, Matsushita C, Maeyama K, Umehara H et al (2008) Suppression of histamine signaling by probiotic Lac-B: a possible mechanism of its anti-allergic effect. J Pharmacol Sci 107(2):159–66

    Article  CAS  Google Scholar 

  62. Ivory K, Chambers S, Pin C, Prieto E, Arques J, Nicoletti C (2008) Oral delivery of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis. Clin Exp Allergy 38(8):1282–1289

    Article  CAS  Google Scholar 

  63. Sunada Y, Nakamura S, Kamei C (2007) Effects of Lactobacillus acidophilus strain L-55 on experimental allergic rhinitis in BALB/c mice. Biol Pharm Bull 30(11):2163–2166

    Article  CAS  Google Scholar 

  64. Zajac AE, Adams AS, Turner JH (2015) A systematic review and meta-analysis of probiotics for the treatment of allergic rhinitis. Int Forum Allergy Rhinol 5(6):524–532

    Article  Google Scholar 

  65. Peng Y, Li A, Yu L, Qin G (2015) The role of probiotics in prevention and treatment for patients with allergic rhinitis: a systematic review. Am J Rhinol Allergy 29(4):292–298

    Article  Google Scholar 

  66. Gorissen DM, Rutten NB, Oostermeijer CM, Niers LE, Hoekstra MO, Rijkers GT et al (2014) Preventive effects of selected probiotic strains on the development of asthma and allergic rhinitis in childhood. The Panda study. Clin Exp Allergy 44(11):1431–1433

    Article  CAS  Google Scholar 

  67. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  Google Scholar 

  68. Dehnavi S, Azad FJ, Hoseini RF, Moazzen N, Tavakkol-Afshari J, Nikpoor AR et al (2019) A significant decrease in the gene expression of interleukin-17 following the administration of synbiotic in patients with allergic rhinitis who underwent immunotherapy: a placebo-controlled clinical trial. J Res Med Sci 24:51

    Article  CAS  Google Scholar 

  69. Tanabe S (2013) The effect of probiotics and gut microbiota on Th17 cells. Int Rev Immunol 32(5–6):511–525

    Article  CAS  Google Scholar 

  70. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M (2022) Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacology 30(2):435–451

    Article  CAS  Google Scholar 

  71. Peldan P, Kukkonen AK, Savilahti E, Kuitunen M (2017) Perinatal probiotics decreased eczema up to 10 years of age, but at 5–10 years, allergic rhino-conjunctivitis was increased. Clin Exp Allergy 47(7):975–979

    Article  CAS  Google Scholar 

Download references

Funding

The research is supported by: Heilongjiang Provincial Health Commission, Application of intelligent health education in the treatment of pediatric allergic rhinitis, No. 2020-335; Heilongjiang Provincial Health Commission, Correlation study of folate intervention in mthfr genetically deficient stroke population, No. 2020-326.

Author information

Authors and Affiliations

Authors

Contributions

JL, and DW, contributed to the idea design and literature search. FF, wrote parts of the manuscript. MM, contributed to designing the figure.

Corresponding author

Correspondence to Dongmei Wu.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Fang, F., Mei, M. et al. The gut microbiome and allergic rhinitis; refocusing on the role of probiotics as a treatment option. Eur Arch Otorhinolaryngol 280, 511–517 (2023). https://doi.org/10.1007/s00405-022-07694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07694-z

Keywords

Navigation