Skip to main content

Advertisement

Log in

Chronic intermittent hypoxia impacts the olfactory nervous system in an age-dependent manner: pilot study

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse during sleep, which induces chronic intermittent hypoxia (CIH). CIH results in low-grade inflammation, sympathetic overactivity, and oxidative stress. Nevertheless, it remains unclear how exposure to CIH affects olfaction. The purpose of this study was, therefore, to investigate the cytotoxic effects of CIH exposure on mouse olfactory epithelium and the underlying pathophysiology involved.

Methods

Mice were randomly divided into four groups: Youth mouse (You) + room air (RA), You + intermittent hypoxia (IH), Elderly mouse (Eld) + RA, and Eld + IH (n = 6 mice/group). Mice in the two hypoxia groups were exposed to CIH. The control condition involved exposure to room air (RA) for 4 weeks. Olfactory neuroepithelium was harvested for histologic examination, gene ontology analysis, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting.

Results

Based on qRT-PCR analysis, olfactory marker protein (OMP), Olfr1507, ADCY3, and GNAL mRNA levels were lower, whereas NGFR, CNPase, NGFRAP1, NeuN, and MAP-2 mRNA levels were higher in the You + IH group than in the You + RA group. Olfactory receptor-regulated genes, neurogenesis-related genes and immunohistochemical results were altered in nasal neuroepithelium under CIH exposure.

Conclusions

Based on genetic and cytologic analysis, CIH impacted the olfactory neuroepithelium in an age-dependent manner. Our findings suggest that CIH-induced damage to the olfactory neuroepithelium may induce more severe change in the youth than in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698

    Article  Google Scholar 

  2. Arnaud C, Dematteis M, Pepin JL et al (2009) Obstructive sleep apnea, immuno-inflammation, and atherosclerosis. Semin Immunopathol 31(1):113–125

    Article  CAS  Google Scholar 

  3. Baguet JP, Barone-Rochette G, Tamisier R et al (2012) Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 9(12):679–688

    Article  CAS  Google Scholar 

  4. Kobrick JL, Zwick H, Witt CE, Devine JA (1984) Effects of extended hypoxia on night vision. Aviat Space Environ Med 55(3):191–195

    CAS  Google Scholar 

  5. Wagner LS, Oakley SR, Vang P et al (2011) Hypoxia-induced changes in standing balance. Aviat Space Environ Med 82(5):518–522

    Article  Google Scholar 

  6. La BP (1878) pression barometrique: recherches de physiologies experimentale. Masson, Parus

    Google Scholar 

  7. Kuehn M, Welsch H, Zahnert T, Hummel T (2008) Changes of pressure and humidity affect olfactory function. Eur Arch Otorhinolaryngol 265(3):299–302

    Article  Google Scholar 

  8. Doty RL (2018) Age-related deficits in taste and smell. Otolaryngol Clin North Am 51(4):815–825

    Article  Google Scholar 

  9. Kang HH, Kim IK, Lee HI et al (2017) Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/Myd88/MAPK/NF-Kb signaling pathways. Biochem Biophys Res Commun 490(2):349–355

    Article  CAS  Google Scholar 

  10. Shin DH, Ahn SH, Yang Y, Choi S, Cho JH, Hong SC et al (2017) The effect of sleep disordered breathing on olfactory functions: analysis by apnea-hypopnea index. Clin Exp Otorhinolaryngol 10(1):71–76

    Article  Google Scholar 

  11. Stepank J. Influence of Hypobaric Hypoxia on the Human Sense of Smell. In: Thesis (Master of Public Health). Galvestone: The University of Texas Graduate School of Biomedical Sciences; 2002.

  12. Altundağ A, Salihoglu M, Çayönü M et al (2014) The effect of high altitude on olfactory functions. Eur Arch Otorhinolaryngol 271(3):615–618

    Article  Google Scholar 

  13. Kühn M, Welsch H, Zahnert T, Hummel T (2009) Is olfactory function impaired in moderate height? Laryngorhinootologie 88(9):583–586

    Article  Google Scholar 

  14. Drobyshevsky A, Robinson AM, Derrick M et al (2006) Sensory deficits and olfactory system injury detected by novel application of MEMRI in newborn rabbit after antenatal hypoxia-ischemia. Neuroimage 32(3):1106–1112

    Article  Google Scholar 

  15. Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA (2015) Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527(7577):240–244

    Article  CAS  Google Scholar 

  16. Pinto JM (2011) Olfaction. Proc Am Thorac Soc 8(1):46–52

    Article  Google Scholar 

  17. Murphy C, Cain WS, Gilmore MM, Skinner RB (1991) Sensory and semantic factors in recognition memory for odors and graphic stimuli: elderly versus young persons. Am J Psychol 104(2):161–192

    Article  CAS  Google Scholar 

  18. Murphy C, Nordin S, Acosta L (1997) Odor learning, recall, and recognition memory in young and elderly adults. Neuropsychology 11(1):126–137

    Article  CAS  Google Scholar 

  19. Evans WJ, Cui L, Starr A (1995) Olfactory event-related potentials in normal human subjects: effects of age and gender. Electroencephalogr Clin Neurophysiol 95(4):293–301

    Article  CAS  Google Scholar 

  20. Hummel T, Barz S, Pauli E, Kobal G (1998) Chemosensory event-related potentials change with age. Electroencephalogr Clin Neurophysiol 108(2):208–217

    Article  CAS  Google Scholar 

  21. Morgan CD, Murphy C (2010) Differential effects of active attention and age on event-related potentials to visual and olfactory stimuli. Int J Psychophysiol 78(2):190–199

    Article  Google Scholar 

  22. Murphy C, Nordin S, de Wijk RA et al (1994) Olfactory-evoked potentials: assessment of young and elderly, and comparison to psychophysical threshold. Chem Senses 19(1):47–56

    Article  CAS  Google Scholar 

  23. Stuck BA, Frey S, Freiburg C, Hörmann K et al (2006) Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 117(6):1367–1375

    Article  CAS  Google Scholar 

  24. Reske M, Kellermann T, Shah NJ et al (2010) Impact of valence and age on olfactory induced brain activation in healthy women. Behav Neurosci 124(3):414–422

    Article  Google Scholar 

  25. Wang J, Sun X, Yang QX (2017) Early aging effect on the function of the human central olfactory system. J Gerontol A Biol Sci Med Sci 72(8):1007–1014

    Google Scholar 

  26. Kim BY, Park JY, Kim E, Kim BG (2020) Olfactory ensheathing cells mediate neuroplastic mechanisms after olfactory training in mouse model. Am J Rhinol Allergy 34(2):217–229

    Article  Google Scholar 

  27. Kim BY, Park JY, Kim E (2020) Differences in mechanisms of steroid therapy and olfactory training for olfactory loss in mice. Am J Rhinol Allergy 34(6):810–821

    Article  Google Scholar 

  28. Deumens R, Koopmans GC, Lemmens M et al (2006) Neurite outgrowth promoting effects of enriched and mixed OEC/ONF cultures. Neurosci Lett 417:20–26

    Article  Google Scholar 

  29. Zhang C, Wang X (2017) Initiation of the age-related decline of odor identification in humans: a meta-analysis. Ageing Res Rev 40:45–50

    Article  Google Scholar 

  30. Doty RL, Shaman P, Dann M (1984) Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 32(3):489–502

    Article  CAS  Google Scholar 

  31. Doty RL, Shaman P, Applebaum SL et al (1984) Smell identification ability: changes with age. Science 226(4681):1441–1443

    Article  CAS  Google Scholar 

  32. Kremer S, Mojet J, Kroeze JHA (2007) Differences in perception of sweet and savoury waffles between elderly and young subjects. Food Qual Pref 18:106–116

    Article  Google Scholar 

  33. Larsson M, Nilsson LG, Olofsson JK, Nordin S (2004) Demographic and cognitive predictors of cued odor identification: evidence from a population-based study. Chem Senses 29(6):547–554

    Article  Google Scholar 

  34. Pinto JM, Schumm LP, Wroblewski KE et al (2014) Racial disparities in olfactory loss among older adults in the United States. J Gerontol A Biol Sci Med Sci 69(3):323–329

    Article  Google Scholar 

  35. Fordyce ID (1961) Olfaction tests. Br J Ind Med 18(3):213–215

    CAS  Google Scholar 

  36. Murphy C (1983) Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. J Gerontol 38(2):217–222

    Article  CAS  Google Scholar 

  37. Stuck BA, Frey S, Freiburg C et al (2006) Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 117(6):1367–1375

    Article  CAS  Google Scholar 

  38. Schiffman SS (1992) Olfaction in aging and medical disorders. In: Serby MJ, Chobor KL (eds) Science of olfaction. Springer, New York, pp 500–525

    Chapter  Google Scholar 

  39. Pourié G, Akchiche N, Millot JL et al (2020) The fate of transplanted olfactory progenitors is conditioned by the cell phenotypes of the receiver brain tissue in cocultures. Int J Mol Sci 21(19):7249

    Article  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01044354).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the manuscript: BYK. Analyzed the data: BYK, JHB, and JYP. Contributed reagents/materials/analysis tools: BYK, IKK, and SHL. Wrote the paper: BYK, IKK, and SHL.

Corresponding author

Correspondence to Boo-Young Kim.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BY., Lee, S.H., Kim, I.K. et al. Chronic intermittent hypoxia impacts the olfactory nervous system in an age-dependent manner: pilot study. Eur Arch Otorhinolaryngol 280, 241–248 (2023). https://doi.org/10.1007/s00405-022-07529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07529-x

Keywords

Navigation