Skip to main content

Advertisement

Log in

Test–retest of the Subjective Visual Vertical Test performed using a mobile application with the smartphone anchored to a turntable

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

The alterations of the Subjective visual vertical test are related to vestibular pathology. Our previously validated method to distinguish between healthy and pathological individuals measures the deviation from the Subjective visual vertical using a mobile application installed on a smartphone fixed to a turntable anchored to the wall. The aim of this study was evaluating the intra-observer reliability of our method in individuals with or without vestibular pathology.

Methods

Participants were recruited consecutively. In each individual two measurements with an interval of 2 h were made. Both tests were performed by the same examiner. A total of 91 patients were included in this study, of which 25 were healthy and 66 diseased. Intra-observer reliability was evaluated using the intraclass correlation coefficient (ICC). To assess the clinical accuracy of the measurement, we calculated the standard error of the measurement (SEM) and the minimum detectable change (MDC) with a 95% confidence interval.

Results

Intra-observer reliability was excellent with an ICC 0.95 (0.92–0.97) in the whole sample, in healthy patients 0.91 (0.80–0.96) and in pathological patients 0.92 (0.87–0.95). The SEM was calculated to be 0.59 for the whole sample (0.26 in the “healthy” group, and 0.67 in the pathological group). Likewise, the sample’s MDC was 1.16, being 0.52 and 1.36 for the healthy and the pathological group, respectively.

Conclusions

Considering the results, our method presents an excellent intraobserver reliability. Furthermore, changes in deviation greater than 0.52 in healthy individuals and 1.36 in pathological individuals can be considered a real change in deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  1. Cochrane GD, Christy JB, Kicker ET, Kailey RP, England BK (2021) Inter-rater and test- retest reliability of computerized clinical vestibular tools. J Vestib Res 31(5):365–373. https://doi.org/10.3233/ves-201522

    Article  Google Scholar 

  2. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS (2019) Sensor-based mHealth authentication for real-time remote healthcare monitoring system: a multilayer systematic review. J Med Syst 43(2):33. https://doi.org/10.1007/s10916-018-1149-5

    Article  Google Scholar 

  3. Allida S, Du H, Xu X, Prichard R, Chang S, Hickman LD, Davidson PM, Inglis SC (2020) mHealth education interventions in heart failure. Cochrane Database Syst Rev 7(7):CD011845. https://doi.org/10.1002/14651858.CD011845.pub2

    Article  Google Scholar 

  4. Gonçalves-Bradley DC, Maria JAR, Ricci-Cabello I, Villanueva G, Fønhus MS, Glenton C, Lewin S, Henschke N, Buckley BS, Mehl GL, Tamrat T, Shepperd S (2020) Mobile technologies to support healthcare provider to healthcare provider communication and management of care. Cochrane Database Syst Rev 8(8):CD012927. https://doi.org/10.1002/14651858.CD012927.pub2

    Article  Google Scholar 

  5. Odendaal WA, Anstey Watkins J, Leon N, Goudge J, Griffiths F, Tomlinson M, Daniels K (2020) Health workers’ perceptions and experiences of using mHealth technologies to deliver primary healthcare services: a qualitative evidence synthesis. Cochrane Database Syst Rev 3(3):CD011942. https://doi.org/10.1002/14651858.CD011942.pub2

    Article  Google Scholar 

  6. Smith C, Gold J, Ngo TD, Sumpter C (2015) Free C (2015) Mobile phone-based interventions for improving contraception use. Cochrane Database Syst Rev 6:CD011159. https://doi.org/10.1002/14651858.CD011159.pub2

    Article  Google Scholar 

  7. Kau LJ, Chen CS (2015) A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J Biomed Health Inf 19(1):44–56. https://doi.org/10.1109/JBHI.2014.2328593

    Article  Google Scholar 

  8. Vermeulen J, Willard S, Aguiar B, De Witte LP (2015) Validity of a smartphone-based fall detection application on different phones worn on a belt or in a trouser pocket. Assist Technol 27(1):18–23. https://doi.org/10.1080/10400435.2014.949015

    Article  Google Scholar 

  9. Botilias G, Papoutsis A, Karvelis P, Stylios C (2020) Track my health: an IoT approach for data acquisition and activity recognition. Stud Health Technol Inf 4(273):266–271. https://doi.org/10.3233/SHTI200654

    Article  Google Scholar 

  10. Crane TE, Skiba MB, Miller A, Garcia DO, Thomson CA (2020) Development and evaluation of an accelerometer-based protocol for measuring physical activity levels in cancer survivors: development and usability study. JMIR Mhealth Uhealth 8(9):e18491. https://doi.org/10.2196/18491

    Article  Google Scholar 

  11. Patterson K, Davey R, Keegan R, Niyonsenga T, Mohanty I, van Berlo S, Freene N (2020) A smartphone app for sedentary behaviour change in cardiac rehabilitation and the effect on hospital admissions: the ToDo-CR randomised controlled trial study protocol. BMJ Open 10(12):e040479. https://doi.org/10.1136/bmjopen-2020-040479

    Article  Google Scholar 

  12. Sandborg J, Söderström E, Henriksson P, Bendtsen M, Henström M, Leppänen MH, Maddison R, Migueles JH, Blomberg M, Löf M (2021) Effectiveness of a smartphone app to promote healthy weight gain, diet, and physical activity during pregnancy (HealthyMoms): randomized controlled trial. JMIR Mhealth Uhealth 9(3):e26091. https://doi.org/10.2196/26091

    Article  Google Scholar 

  13. Stewart MT, Nezich T, Lee JM, Hasson RE, Colabianchi N (2021) Using a mobile Phone App to analyze the relationship between planned and performed physical activity in university students: observational study. JMIR Mhealth Uhealth 9(4):e17581. https://doi.org/10.2196/17581

    Article  Google Scholar 

  14. Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G (2014) Mobile smartphone applications for body position measurement in rehabilitation: a review of goniometric tools. PM R 6(11):1038–1043. https://doi.org/10.1016/j.pmrj.2014.05.003

    Article  Google Scholar 

  15. Ravi B, Kapoor M, Player D (2021) Feasibility and reliability of a web-based smartphone application for joint position measurement. J Rehabil Med 53(5):jrm00188. https://doi.org/10.2340/16501977-2780

    Article  Google Scholar 

  16. Gawronska A, Pajor A, Zamyslowska-Szmytke E, Rosiak O, Jozefowicz-Korczynska M (2020) Usefulness of mobile devices in the diagnosis and rehabilitation of patients with dizziness and balance disorders: a state of the art review. Clin Interv Aging 22(15):2397–2406. https://doi.org/10.2147/CIA.S289861

    Article  Google Scholar 

  17. Marques DL, Neiva HP, Pires IM, Zdravevski E, Mihajlov M, Garcia NM, Ruiz-Cárdenas JD, Marinho DA, Marques MC (2021) An experimental study on the validity and reliability of a smartphone application to acquire temporal variables during the single sit-to-stand test with older adults. Sensors (Basel) 21(6):2050. https://doi.org/10.3390/s21062050

    Article  Google Scholar 

  18. Rodríguez-Almagro D, Obrero-Gaitán E, Lomas-Vega R, Zagalaz-Anula N, Osuna-Pérez MC, Achalandabaso-Ochoa A (2020) New mobile device to measure verticality perception: results in young subjects with headaches. Diagnostics (Basel) 10(10):796. https://doi.org/10.3390/diagnostics10100796

    Article  Google Scholar 

  19. Voß LJ, Zabaneh SI, Hölzl M, Olze H, Stölzel K (2019) The subjective perception of the vertical-a valuable parameter for determination of peripheral vestibular disorder in Menière’s disease in the chronic phase? HNO 67(4):282–292. https://doi.org/10.1007/s00106-019-0626-6 (German)

    Article  Google Scholar 

  20. Glasauer S, Dieterich M, Brandt T (2019) Computational neurology of gravity perception involving semicircular canal dysfunction in unilateral vestibular lesions. Prog Brain Res 248:303–317. https://doi.org/10.1016/bs.pbr.2019.04.010

    Article  Google Scholar 

  21. Dieterich M, Brandt T (2019) Perception of verticality and vestibular disorders of balance and falls. Front Neurol 3(10):172. https://doi.org/10.3389/fneur.2019.00172

    Article  Google Scholar 

  22. Bürgin A, Bockisch CJ, Tarnutzer AA (2018) Precision of perceived direction of gravity in partial bilateral vestibulopathy correlates with residual utricular function. Clin Neurophysiol 129(5):934–945. https://doi.org/10.1016/j.clinph.2018.02.121

    Article  Google Scholar 

  23. Toupet M, Van Nechel C, Hautefort C, Duquesne U, Heuschen S, BozorgGrayeli A (2017) Subjective visual vertical in idiopathic bilateral vestibular hypofunction: enhanced role of vision, neck, and body proprioception. Otol Neurotol 38(7):1010–1016. https://doi.org/10.1097/MAO.0000000000001462

    Article  Google Scholar 

  24. Sapountzi Z, Vital V, Psillas G (2017) Subjective visual vertical in patients with benign positional paroxysmal vertigo. Hippokratia 21(3):159 (PMID: 30479482)

    CAS  Google Scholar 

  25. Obrero-Gaitán E, Molina F, Montilla-Ibañez MD, Del-Pino-Casado R, Rodriguez-Almagro D, Lomas-Vega R (2021) Misperception of visual vertical in peripheral vestibular disorders. A systematic review with meta-analysis. Laryngoscope 131(5):1110–1121. https://doi.org/10.1002/lary.29124

    Article  Google Scholar 

  26. Gandor F, Basta D, Gruber D, Poewe W, Ebersbach G (2016) Subjective visual vertical in PD patients with lateral trunk flexion. Parkinsons Dis. https://doi.org/10.1155/2016/7489105

    Article  Google Scholar 

  27. Huh YE, Kim K, Chung WH, Youn J, Kim S, Cho JW (2018) Pisa syndrome in Parkinson’s disease: pathogenic roles of verticality perception deficits. Sci Rep 8(1):1804. https://doi.org/10.1038/s41598-018-20129-2

    Article  CAS  Google Scholar 

  28. Venhovens J, Meulstee J, Bloem BR, Verhagen WI (2016) Neurovestibular analysis and falls in Parkinson’s disease and atypical parkinsonism. Eur J Neurosci 43(12):1636–1646. https://doi.org/10.1111/ejn.13253

    Article  CAS  Google Scholar 

  29. Piscicelli C, Pérennou D (2017) Visual verticality perception after stroke: a systematic review of methodological approaches and suggestions for standardization. Ann Phys Rehabil Med 60(3):208–216. https://doi.org/10.1016/j.rehab.2016.02.004

    Article  CAS  Google Scholar 

  30. Pérennou D, Piscicelli C, Barbieri G, Jaeger M, Marquer A, Barra J (2014) Measuring verticality perception after stroke: why and how? Neurophysiol Clin 44(1):25–32. https://doi.org/10.1016/j.neucli.2013.10.131

    Article  Google Scholar 

  31. Ulozienė I, Totilienė M, Balnytė R, Kuzminienė A, Kregždytė R, Paulauskas A, Blažauskas T, Marozas V, Uloza V, Kaski D (2020) Subjective visual vertical and visual dependency in patients with multiple sclerosis. Mult Scler Relat Disord 44:102255. https://doi.org/10.1016/j.msard.2020.102255

    Article  Google Scholar 

  32. Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M (2009) A bucket of static vestibular function. Neurology 72(19):1689–1692. https://doi.org/10.1212/WNL.0b013e3181a55ecf

    Article  CAS  Google Scholar 

  33. Chetana N, Jayesh R (2015) Subjective visual vertical in various vestibular disorders by using a simple bucket test. Indian J Otolaryngol Head Neck Surg 67(2):180–184. https://doi.org/10.1007/s12070-014-0760-0

    Article  Google Scholar 

  34. Oliva GC, Ochoa SN, Kuroiwa RM, Barraza PC, Núñez TM, Breinbauer KH (2017) Nuevo método para evaluar el Test Subjetivo Vertical. Revista de otorrinolaringología y cirugía de cabeza y cuello 77(2):124–134. https://doi.org/10.4067/S0718-48162017000200002

    Article  Google Scholar 

  35. Negrillo-Cárdenas J, Rueda-Ruiz AJ, Ogayar-Anguita CJ, Lomas-Vega R, Segura-Sánchez RJ (2018) A system for the measurement of the subjective visual vertical using a virtual reality device. J Med Syst 42(7):124. https://doi.org/10.1007/s10916-018-0981-y

    Article  Google Scholar 

  36. Ulozienė I, Totilienė M, Paulauskas A, Blažauskas T, Marozas V, Kaski D, Ulozas V (2017) Subjective visual vertical assessment with mobile virtual reality system. Medicina (Kaunas) 53(6):394–402. https://doi.org/10.1016/j.medici.2018.02.002

    Article  Google Scholar 

  37. Riera-Tur L, Caballero-Garcia A, Martin-Mateos AJ, Lechuga-Sancho AM (2021) Efficacy of the subjective visual vertical test performed using a mobile application to detect vestibular pathology. J Vestib Res. https://doi.org/10.3233/VES-201526

    Article  Google Scholar 

  38. Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, Roberts C, Shoukri M, Streiner DL (2011) Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol 64(1):96–106. https://doi.org/10.1016/j.jclinepi.2010.03.002

    Article  Google Scholar 

  39. Agrawal Y, Van de Berg R, Wuyts F, Walther L, Magnusson M, Oh E, Sharpe M, Strupp M (2019) Presbyvestibulopathy: diagnostic criteria Consensus document of the classification committee of the Bárány Society. J Vestib Res 29(4):161–170. https://doi.org/10.3233/VES-190672

    Article  Google Scholar 

  40. Kim HA, Bisdorff A, Bronstein AM, Lempert T, Rossi-Izquierdo M, Staab JP, Strupp M, Kim JS (2019) Hemodynamic orthostatic dizziness/vertigo: diagnostic criteria. J Vestib Res 29(2–3):45–56. https://doi.org/10.3233/VES-190655

    Article  Google Scholar 

  41. Lempert T, Olesen J, Furman J, Waterston J, Seemungal B, Carey J, Bisdorff A, Versino M, Evers S, Newman-Toker D (2012) Vestibular migraine: diagnostic criteria. J Vestib Res 22(4):167–172. https://doi.org/10.3233/VES-2012-0453

    Article  Google Scholar 

  42. Lopez-Escamez JA, Carey J, Chung WH, Goebel JA, Magnusson M, Mandalà M, Newman-Toker DE, Strupp M, Suzuki M, Trabalzini F, Bisdorff A (2015) Diagnostic criteria for Menière’s disease. J Vestib Res 25(1):1–7. https://doi.org/10.3233/VES-150549

    Article  Google Scholar 

  43. Staab JP, Eckhardt-Henn A, Horii A, Jacob R, Strupp M, Brandt T, Bronstein A (2017) Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): consensus document of the committee for the Classification of Vestibular Disorders of the Bárány Society. J Vestib Res 27(4):191–208. https://doi.org/10.3233/VES-170622

    Article  Google Scholar 

  44. Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, Della Santina CC, Kingma H (2017) Bilateral vestibulopathy: diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J Vestib Res 27(4):177–189. https://doi.org/10.3233/VES-170619

    Article  Google Scholar 

  45. Strupp M, Lopez-Escamez JA, Kim JS, Straumann D, Jen JC, Carey J, Bisdorff A, Brandt T (2016) Vestibular paroxysmia: diagnostic criteria. J Vestib Res 26(5–6):409–415. https://doi.org/10.3233/VES-160589

    Article  Google Scholar 

  46. von Brevern M, Bertholon P, Brandt T, Fife T, Imai T, Nuti D, Newman-Toker D (2015) Benign paroxysmal positional vertigo: diagnostic criteria. J Vestib Res 25(3–4):105–117. https://doi.org/10.3233/VES-150553

    Article  Google Scholar 

  47. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428. https://doi.org/10.1037//0033-2909.86.2.420

    Article  CAS  Google Scholar 

  48. Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240. https://doi.org/10.1519/15184.1

    Article  Google Scholar 

  49. Ferreira MM, Ganança MM, Caovilla HH (2017) Subjective visual vertical after treatment of benign paroxysmal positional vertigo. Braz J Otorhinolaryngol 83(6):659–664. https://doi.org/10.1016/j.bjorl.2016.08.014

    Article  Google Scholar 

  50. Michelson PL, McCaslin DL, Jacobson GP, Petrak M, English L, Hatton K (2018) Assessment of subjective visual vertical (SVV) using the “Bucket Test” and the virtual SVV system. Am J Audiol 27(3):249–259. https://doi.org/10.1044/2018_AJA-17-0019

    Article  Google Scholar 

  51. Lawson BD (2014) Motion sickness symptomatology and origins. Handbook of virtual environment: design, implementation, and applications, 2nd edn. CRC Press, Boca Raton, pp 532–587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, data analysis, interpretation and writing of the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laura Riera-Tur.

Ethics declarations

Conflicts of interest

Authors declare not to have any potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riera-Tur, L., Antúnez-Estudillo, E., Montesinos-González, J.M. et al. Test–retest of the Subjective Visual Vertical Test performed using a mobile application with the smartphone anchored to a turntable. Eur Arch Otorhinolaryngol 280, 613–621 (2023). https://doi.org/10.1007/s00405-022-07512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07512-6

Keywords

Navigation