Skip to main content

Advertisement

Log in

Placental-Cadherin, a biomarker for local immune status and poor prognosis among patients with tongue squamous cell carcinoma

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

The prognostic and clinicopathological value of placental-Cadherin (CDH3) in multiple cancers is controversial. The diagnostic significance and functional mechanism of CDH3 in tongue squamous cell carcinoma (TSCC) have not been thoroughly investigated. This study aims to clarify the potential of CDH3 as biomarker for TSCC.

Methods

Here, meta-analysis, bioinformatics, along wet-lab techniques were employed to evaluate the diagnostic, as well as the prognostic value of CDH3 in diverse types of cancers, especially TSCC. Meta-analysis was used to determine the influence of CDH3 on prognostic and clinicopathological features in numerous cancers. Molecular biology function was used to investigate the role of CDH3 in TSCC cells. The relationship of CDH3 with tumor-infiltrating immune cells (TIICs) in TSCC was assessed using CIBERSORT. Moreover, gene set enrichment analysis (GSEA) was done based on TCGA. Besides, the hub genes and associated cascades were uncovered based on gene co-expression with CDH3.

Results

CDH3 upregulation correlated with worse overall survival and disease-free survival in various cancers. CDH3 was validated as an independent risk factor for HNSC and was linked to the onset of tumors, tumor stage, and infiltration depth. CDH3 silencing inhibited cell growth and induced apoptosis of the CAL-27 cell line. CDH3 expression level correlated with infiltration by macrophages, T cells, T cell regulatory cells (Tregs), and plasma cells in TSCC. GSEA revealed that CDH3 influences multiple cancer-associated cascades. Besides, CBX3, CCHCR1, along NFYC were identified as the core hub genes for CDH3.

Conclusion

We identified CDH3 as a pan-cancer gene with potential prognostic and diagnostic significance in various cancers, particularly in TSCC, where it is tumorigenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jin Y, Yang Y (2019) Bioinformatics-based discovery of PYGM and TNNC2 as potential biomarkers of head and neck squamous cell carcinoma. Biosci Rep 39(7):BSR0191612. https://doi.org/10.1042/BSR20191612

    Article  Google Scholar 

  2. Perumal V, Corica T, Dharmarajan AM, Sun Z, Dhaliwal SS, Dass CR, Dass J (2019) Circulating tumour cells (CTC) Head and neck cancer and radiotherapy; future perspectives. Cancers. https://doi.org/10.3390/cancers11030367

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou H, Zhang J, Guo L, Nie J, Zhu C, Ma X (2018) The value of narrow band imaging in diagnosis of head and neck cancer: a meta-analysis. Sci Rep 8(1):515. https://doi.org/10.1038/s41598-017-19069-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jansen L, Buttmann-Schweiger N, Listl S, Ressing M, Holleczek B, Katalinic A, Luttmann S, Kraywinkel K, Brenner H, Group GCSW (2018) Differences in incidence and survival of oral cavity and pharyngeal cancers between Germany and the United States depend on the HPV-association of the cancer site. Oral Oncol 76:8–15. https://doi.org/10.1016/j.oraloncology.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Zhu P, He L, Li Y, Huang W, Xi F, Lin L, Zhi Q, Zhang W, Tang YT, Geng C, Lu Z, Xu X (2014) OTG-snpcaller: an optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS ONE 9(5):e97507. https://doi.org/10.1371/journal.pone.0097507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gardner SN, Frey KG, Redden CL, Thissen JB, Allen JE, Allred AF, Dyer MD, Mokashi VP, Slezak TR (2015) Targeted amplification for enhanced detection of biothreat agents by next-generation sequencing. BMC Res Notes 8:682. https://doi.org/10.1186/s13104-015-1530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41(2):349–369. https://doi.org/10.1016/j.biocel.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki M, Akiyama-Oda Y, Oda H (2017) Evolutionary origin of type IV classical cadherins in arthropods. BMC Evol Biol 17(1):142. https://doi.org/10.1186/s12862-017-0991-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cappellesso R, Marioni G, Crescenzi M, Giacomelli L, Guzzardo V, Mussato A, Staffieri A, Martini A, Blandamura S, Fassina A (2015) The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathology 67(4):491–500. https://doi.org/10.1111/his.12668

    Article  PubMed  Google Scholar 

  10. Franz L, Nicole L, Frigo AC, Ottaviano G, Gaudioso P, Saccardo T, Visconti F, Cappellesso R, Blandamura S, Fassina A, Marioni G (2021) Epithelial-to-mesenchymal transition and neoangiogenesis in laryngeal squamous cell carcinoma. Cancers. https://doi.org/10.3390/cancers13133339

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ (2017) A central role for cadherin signaling in cancer. Exp Cell Res 358(1):78–85. https://doi.org/10.1016/j.yexcr.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nose A, Takeichi M (1986) A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J Cell Biol 103(6 Pt 2):2649–2658. https://doi.org/10.1083/jcb.103.6.2649

    Article  CAS  PubMed  Google Scholar 

  13. Vieira AF, Paredes J (2015) P-cadherin and the journey to cancer metastasis. Mol Cancer 14:178. https://doi.org/10.1186/s12943-015-0448-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paredes J, Albergaria A, Oliveira JT, Jeronimo C, Milanezi F, Schmitt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res Off J Am Assoc Cancer Res 11(16):5869–5877. https://doi.org/10.1158/1078-0432.CCR-05-0059

    Article  CAS  Google Scholar 

  15. Shimoyama Y, Hirohashi S (1991) Expression of E- and P-cadherin in gastric carcinomas. Cancer Res 51(8):2185–2192

    CAS  PubMed  Google Scholar 

  16. Taniuchi K, Nakagawa H, Hosokawa M, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O, Katagiri T, Nakamura Y (2005) Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 65(8):3092–3099. https://doi.org/10.1158/0008.5472.CAN-04-3646

    Article  CAS  PubMed  Google Scholar 

  17. Bauer R, Valletta D, Bauer K, Thasler WE, Hartmann A, Muller M, Reichert TE, Hellerbrand C (2014) Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity. Int J Clin Exp Pathol 7(9):6125–6132

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smythe WR, Williams JP, Wheelock MJ, Johnson KR, Kaiser LR, Albelda SM (1999) Cadherin and catenin expression in normal human bronchial epithelium and non-small cell lung cancer. Lung Cancer 24(3):157–168. https://doi.org/10.1016/s0169-5002(99)00032-x

    Article  CAS  PubMed  Google Scholar 

  19. Van Marck V, Stove C, Van Den Bossche K, Stove V, Paredes J, Vander Haeghen Y, Bracke M (2005) P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res 65(19):8774–8783. https://doi.org/10.1158/0008-5472.CAN-04-4414

    Article  CAS  PubMed  Google Scholar 

  20. Hsiao TF, Wang CL, Wu YC, Feng HP, Chiu YC, Lin HY, Liu KJ, Chang GC, Chien KY, Yu JS, Yu CJ (2020) Integrative omics analysis reveals soluble cadherin-3 as a survival predictor and an early monitoring marker of EGFR tyrosine kinase inhibitor therapy in lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 26(13):3220–3229. https://doi.org/10.1158/1078-0432.CCR-19-3972

    Article  CAS  Google Scholar 

  21. Li L, Yu S, Wu Q, Dou N, Li Y, Gao Y (2019) KLF4-mediated CDH3 upregulation suppresses human hepatoma cell growth and migration via GSK-3beta signaling. Int J Biol Sci 15(5):953–961. https://doi.org/10.7150/ijbs.30857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP, Thompson JF (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol Off J Am Soc Clin Oncol 30(21):2678–2683. https://doi.org/10.1200/JCO.2011.37.8539

    Article  Google Scholar 

  23. Al Absi A, Wurzer H, Guerin C, Hoffmann C, Moreau F, Mao X, Brown-Clay J, Petrolli R, Casellas CP, Dieterle M, Thiery JP, Chouaib S, Berchem G, Janji B, Thomas C (2018) Actin cytoskeleton remodeling drives breast cancer cell escape from natural killer-mediated cytotoxicity. Cancer Res 78(19):5631–5643. https://doi.org/10.1158/0008-5472.CAN-18-0441

    Article  CAS  PubMed  Google Scholar 

  24. Insua-Rodriguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55. https://doi.org/10.1016/j.addr.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  25. Lin S, Huang C, Gunda V, Sun J, Chellappan SP, Li Z, Izumi V, Fang B, Koomen J, Singh PK, Hao J, Yang S (2019) Fascin controls metastatic colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments. Cell Rep 28(11):2824–2836. https://doi.org/10.1016/j.celrep.2019.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, Chen CS, Gao B, Minna JD, Bachoo R, DeBerardinis RJ, Danuser G (2020) Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578(7796):621–626. https://doi.org/10.1038/s41586-020-1998-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, Li X, Tao D, Gong J, Xie D (2018) Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res CR 37(1):175. https://doi.org/10.1186/s13046-018-0850-z

    Article  CAS  PubMed  Google Scholar 

  28. Wortzel I, Dror S, Kenific CM, Lyden D (2019) Exosome-mediated metastasis: communication from a distance. Dev Cell 49(3):347–360. https://doi.org/10.1016/j.devcel.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  29. Sathyanarayana UG, Moore AY, Li L, Padar A, Majmudar K, Stastny V, Makarla P, Suzuki M, Minna JD, Feng Z, Gazdar AF (2007) Sun exposure related methylation in malignant and non-malignant skin lesions. Cancer Lett 245(1–2):112–120. https://doi.org/10.1016/j.canlet.2005.12.042

    Article  CAS  PubMed  Google Scholar 

  30. Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, Hruban RH, Goggins M (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742

    CAS  PubMed  Google Scholar 

  31. Vered M, Lehtonen M, Hotakainen L, Pirila E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T, Dayan D (2015) Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer 15:25. https://doi.org/10.1186/s12885-015-1030-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Collins RJ, Jiang WG, Hargest R, Mason MD, Sanders AJ (2015) EPLIN: a fundamental actin regulator in cancer metastasis? Cancer Metastasis Rev 34(4):753–764. https://doi.org/10.1007/s10555-015-9595-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong J, Shen S, Zhang Z, Wang W (2020) Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark Sect A Dis Markers 27(4):505–517. https://doi.org/10.3233/CBM-190038

    Article  CAS  Google Scholar 

  34. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1(6):a002899. https://doi.org/10.1101/cshperspect.a002899

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gnagnarella P, Raimondi S, Aristarco V, Johansson HA, Bellerba F, Corso F, Gandini S (2020) Vitamin D receptor polymorphisms and cancer. Adv Exp Med Biol 1268:53–114. https://doi.org/10.1007/978-3-030-46227-7_4

    Article  CAS  PubMed  Google Scholar 

  36. Matsui T, Shigeta T, Umeda M, Komori T (2015) Vascular endothelial growth factor C (VEGF-C) expression predicts metastasis in tongue cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 120(4):436–442. https://doi.org/10.1016/j.oooo.2015.06.002

    Article  PubMed  Google Scholar 

  37. Yang X, Pang Y, Zhang J, Shi J, Zhang X, Zhang G, Yang S, Wang J, Hu K, Wang J, Jing H, Ke X, Fu L (2019) High expression levels of ACTN1 and ACTN3 indicate unfavorable prognosis in acute myeloid leukemia. J Cancer 10(18):4286–4292. https://doi.org/10.7150/jca.31766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK (2016) Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351(6273):aad4395. https://doi.org/10.1126/science.aad4395

    Article  CAS  PubMed  Google Scholar 

  39. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273. https://doi.org/10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  40. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res BCR 12(5):R68. https://doi.org/10.1186/bcr2635

    Article  CAS  PubMed  Google Scholar 

  41. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  42. Shen Y, Xu J, Pan X, Zhang Y, Weng Y, Zhou D, He S (2020) LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis. Cell Death Dis 11(4):278. https://doi.org/10.1038/s41419-020-2485-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, T. & Mao, L. Placental-Cadherin, a biomarker for local immune status and poor prognosis among patients with tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol 279, 3597–3609 (2022). https://doi.org/10.1007/s00405-021-07181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-07181-x

Keywords

Navigation