Skip to main content

Advertisement

Log in

Clinical value of contrast-enhanced ultrasonography in focal hypoechogenic lesions of thyroid

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

The objectives of this study were to analyze the accuracy of contrast-enhanced ultrasonography (CE-US) in diagnosing focal hypoechogenic lesions of the thyroid (FHLT), and to explore the clinical value of CE-US in the diagnosis of FHLT.

Methods

Patients undergoing CE-US and ultrasound-guided fine needle aspiration (US-FNA) of FHLT at First Hospital of China Medical University between January 2017 and December 2018 were selected for the study; this included patients with papillary thyroid carcinoma (PTC), subacute thyroiditis (SAT) and focal Hashimoto thyroiditis (FHT). All patients underwent color Doppler ultrasonography (CD-US) after which thyroid image reporting and data system (TI-RADS) grading were done. Then, each patient underwent CE-US and US-FNA. The results of the CE-US were analyzed using descriptive statistics. The cytopathological results from the US-FNAs were the gold standard used to confirm the diagnoses.

Results

A total of 56 patients were selected for the study. In the PTC group (n = 16), grading was as follows: TI-RADS4a, n = 3; TI-RADS4b, n = 12; and TI-RADS4c, n = 1. More patients with PTC showed heterogeneous hypoenhancement (n = 15) than heterogeneous isoenhancement (n = 1) on CE-US. In the SAT group (n = 24), grading was as follows: TI-RADS3, n = 1; TI-RADS4a, n = 18; TI-RADS4b, n = 5. Fewer patients with SAT showed heterogeneous hypoenhancement (n = 2) than heterogeneous isoenhancement (n = 22) on CE-US. In the FHT group (n = 16), grading was as follows: TI-RADS3, n = 1; TI-RADS4a, n = 11; TI-RADS4b, n = 4. Of those in the FHT group, one patient showed heterogeneous isoenhancement, one patient showed heterogeneous hypoenhancement, and 14 showed uniform isoenhancement on CE-US. The diagnostic accuracy of CD-US alone differed significantly from that of CD-US + CE-US (p < 0.05).

Conclusion

CE-US has a high diagnostic accuracy for FHLT and can be used to identify PTC, SAT, and FHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu D, Lv X, Wang S, Dai W (2014) Risk factors for predicting central lymph node metastasis in papillary thyroid microcarcinoma. Int J Clin Exp Pathol 7(9):6199–6205

    PubMed  PubMed Central  Google Scholar 

  2. Chen AY, Jemal A, Ward EM (2009) Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115(16):3801–3807

    Article  PubMed  Google Scholar 

  3. Zhao Z, Zhao Z, Ma J, Jing S (2015) Clinical significance of ultrasonography in the diagnosis of central clearing of papillary thyroid carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 29(6):538–541

    PubMed  Google Scholar 

  4. Zhao H, Liu X, Lei B, Cheng P, Li J, Wu Y, Ma Z (2019) Impact of thyroid nodule sizes on the diagnostic performance of Korean thyroid imaging reporting and data system and contrast-enhanced ultrasound. Clin Hemorheol Microcirc 72(3):317–326

    Article  PubMed  Google Scholar 

  5. Tedesco G, Sarno A, Rizzo G, Grecchi A, Testa I, Giannotti G, D’Onofrio M (2019) Clinical use of contrast-enhanced ultrasound beyond the liver: a focus on renal, splenic, and pancreatic applications. Ultrasonography 38(4):278–288

    Article  PubMed  Google Scholar 

  6. Meloni MF, Smolock A, Cantisani V, Bezzi M, D’Ambrosio F, Proiti M, Lee F, Aiani L, Calliada F, Ferraioli G (2015) Contrast enhanced ultrasound in the evaluation and percutaneous treatment of hepatic and renal tumors. Eur J Radiol 84(9):1666–1674

    Article  PubMed  Google Scholar 

  7. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, Jung HK, Choi JS, Kim BM, Kim EK (2011) Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 260(3):892–899

    Article  PubMed  Google Scholar 

  8. Song W, Li S, Liu J, Qin H, Zhang B, Zhang S, Hao A (2019) Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J Biomed Health Inform 23(3):1215–1224

    Article  PubMed  Google Scholar 

  9. Hou CJ, Wei R, Tang JL, Hu QH, He HF, Fan XM (2018) Diagnostic value of ultrasound features and sex of fetuses in female patients with papillary thyroid microcarcinoma. Sci Rep 8(1):7510

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma HJ, Yang JC, Leng ZP, Chang Y, Kang H, Teng LH (2017) Preoperative prediction of papillary thyroid microcarcinoma via multiparameter ultrasound. Acta Radiol 58(11):1303–1311

    Article  PubMed  Google Scholar 

  11. Jonas C, Bertrand C, Michel L, Donckier JE (2016) Painful thyroid nodule, a misleading presentation of subacute thyroiditis. Acta Chir Belg 116(5):301–304

    Article  PubMed  Google Scholar 

  12. Kandemirli SG, Bayramoglu Z, Caliskan E, Sari ZNA, Adaletli I (2018) Quantitative assessment of thyroid gland elasticity with shear-wave elastography in pediatric patients with Hashimoto’s thyroiditis. J Med Ultrason 45(3):417–423

    Article  Google Scholar 

  13. Zhang JW, Chen ZJ, Gopinathan A (2016) Focal nodular Hashimoto’s thyroiditis: comparison of ultrasonographic features with malignant and other benign nodules. Ann Acad Med Singapore 45(8):357–363

    PubMed  Google Scholar 

  14. Wu H, Zhang B (2015) Ultrasonographic appearance of focal Hashimoto’s thyroiditis: a single institution experience. Endocr J 62(7):655–663

    Article  PubMed  Google Scholar 

  15. Sun B, Lang L, Zhu X, Jiang F, Hong Y, He L (2015) Accuracy of contrast-enhanced ultrasound in the identification of thyroid nodules: a meta-analysis. Int J Clin Exp Med 8(8):12882–12889

    PubMed  PubMed Central  Google Scholar 

  16. Yu D, Han Y, Chen T (2014) Contrast-enhanced ultrasound for differentiation of benign and malignant thyroid lesions: meta-analysis. Otolaryngol Head Neck Surg 151(6):909–915

    Article  PubMed  Google Scholar 

  17. Zhao RN, Zhang B, Yang X, Jiang YX, Lai XJ, Zhang XY (2015) Logistic regression analysis of contrast-enhanced ultrasound and conventional ultrasound characteristics of sub-centimeter thyroid nodules. Ultrasound Med Biol 41(12):3102–3108

    Article  PubMed  Google Scholar 

  18. Li F, Luo H (2013) Comparative study of thyroid puncture biopsy guided by contrast-enhanced ultrasonography and conventional ultrasound. Exp Ther Med 5(5):1381–1384

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang YZ, Xu T, Gong HY, Li CY, Ye XH, Lin HJ, Shen MP, Duan Y, Yang T, Wu XH (2016) Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules. Medicine (Baltimore) 95(45):e5329

    Article  Google Scholar 

  20. Zhang Y, Zhou P, Tian SM, Zhao YF, Li JL, Li L (2017) Usefulness of combined use of contrast-enhanced ultrasound and TI-RADS classification for the differentiation of benign from malignant lesions of thyroid nodules. Eur Radiol 27(4):1527–1536

    Article  PubMed  Google Scholar 

  21. Liu Q, Cheng J, Li J, Gao X, Li H (2018) The diagnostic accuracy of contrast-enhanced ultrasound for the differentiation of benign and malignant thyroid nodules: a PRISMA compliant meta-analysis. Medicine (Baltimore) 97(49):e13325

    Article  Google Scholar 

  22. Zhan J, Ding H (2018) Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography 37(4):288–297

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen HY, Liu WY, Zhu H, Jiang DW, Wang DH, Chen Y, Li W, Pan G (2016) Diagnostic value of contrast-enhanced ultrasound in papillary thyroid microcarcinoma. Exp Ther Med 11(5):1555–1562

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meng XY, Zhang Q, Li Q, Lin S, Li J (2014) Immunohistochemical levels of cyclo-oxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor in papillary thyroid carcinoma and their clinicopathological correlations. J Int Med Res 42(3):619–627

    Article  PubMed  Google Scholar 

  25. Sun XF, Zhang H (2006) Clinicopathological significance of stromal variables: angiogenesis, lymphangiogenesis, inflammatory infiltration, MMP and PINCH in colorectal carcinomas. Mol Cancer 5:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruchala M, Szczepanek-Parulska E, Zybek A, Moczko J, Czarnywojtek A, Kaminski G, Sowinski J (2012) The role of sonoelastography in acute, subacute and chronic thyroiditis: a novel application of the method. Eur J Endocrinol 166(3):425–432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Gao, N., Bian, D. et al. Clinical value of contrast-enhanced ultrasonography in focal hypoechogenic lesions of thyroid. Eur Arch Otorhinolaryngol 279, 2077–2082 (2022). https://doi.org/10.1007/s00405-021-06982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06982-4

Keywords

Navigation