Skip to main content

Advertisement

Log in

Altered glucose metabolism of the olfactory-related cortices in anosmia patients with traumatic brain injury

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Impaired brain cortices contribute significantly to the pathophysiological mechanisms of post-traumatic olfactory dysfunction (PTOD). This study aimed to use 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to measure cerebral cortices' metabolism activity and then to explore their associations with olfaction in patients with PTOD.

Methods

Ethics committee-approved prospective studies included 15 patients with post-traumatic anosmia and 11 healthy volunteers. Olfactory function was assessed using the Sniffin’ Sticks. Participants underwent 18F-FDG PET/CT scan and the image data were collected for the voxel-based whole brain analysis. Furthermore, the standardized uptake value ratio (SUVR) of the whole brain regions was measured and correlated with olfactory function.

Results

Patients with post-traumatic anosmia showed significantly reduced glucose metabolism in bilateral rectus, bilateral superior and medial orbitofrontal cortex (OFC), bilateral thalamus, left hippocampus and parahippocampus and left superior temporal pole (all p < 0.001). In contrast, patients with post-traumatic anosmia had significantly increased glucose metabolism in the bilateral insula (all p < 0.001). SUVR values among a total of 17 cerebral cortices including frontal, limbic, and temporal regions were significantly and positively correlated with olfactory function. The cerebral cortices with the top three correlations were the right middle frontal OFC (r = 0.765, p = 0.001), right caudate (r = 0.652, p = 0.010) and right putamen (r = 0.623, p = 0.002).

Conclusion

Patients with post-traumatic anosmia presented with distinct patterns of brain metabolism and key cortices that highly associated with the retained olfactory function were identified. The preliminary results further support the potential use of PET imaging for precisely assessing brain metabolism in patients with PTOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fan LY, Kuo CL, Lirng JF, Shu CH (2015) Investigation of prognostic factors for post-traumatic olfactory dysfunction. J Chin Med Assoc 78:299–303

    Article  PubMed  Google Scholar 

  2. Hummel T, Whitcroft KL, Andrews P et al (2016) Position paper on olfactory dysfunction. Rhinology 56:1–30

    CAS  PubMed  Google Scholar 

  3. Ahmedy F, Mazlan M, Danaee M, Abu Bakar MZ (2020) Post-traumatic brain injury olfactory dysfunction: factors influencing quality of life. Eur Arch Otorhinolaryngol 277:1343–1351

    Article  PubMed  Google Scholar 

  4. Bratt M, Skandsen T, Hummel T et al (2018) Frequency and prognostic factors of olfactory dysfunction after traumatic brain injury. Brain Inj 32:1021–1027

    Article  PubMed  Google Scholar 

  5. Schofield PW, Doty RL (2019) The influence of head injury on olfactory and gustatory function. Handb Clin Neurol 164:409–429

    Article  PubMed  Google Scholar 

  6. Ogawa T, Rutka J (1999) Olfactory dysfunction in head injured workers. Acta Otolaryngol Suppl 540:50–57

    CAS  PubMed  Google Scholar 

  7. Levin HS, High WM, Eisenberg HM (1985) Impairment of olfactory recognition after closed head injury. Brain 108(Pt 3):579–591

    Article  PubMed  Google Scholar 

  8. Lötsch J, Reither N, Bogdanov V et al (2015) A brain-lesion pattern based algorithm for the diagnosis of posttraumatic olfactory loss. Rhinology 53:365–370

    Article  PubMed  Google Scholar 

  9. Whitcroft KL, Hummel T (2019) Clinical diagnosis and current management strategies for olfactory dysfunction: a review. JAMA Otolaryngol Head Neck Surg. 145(9):846–53

    Article  PubMed  Google Scholar 

  10. Han P, Winkler N, Hummel C, Hähner A, Gerber J, Hummel T (2018) Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J Neurotrauma 35:2632–2640

    Article  PubMed  Google Scholar 

  11. Moon WJ, Park M, Hwang M, Kim JK (2018) Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. AJNR Am J Neuroradiol 39:2320–2325

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miao X, Yang L, Gu H et al (2015) Evaluation of post-traumatic anosmia with MRI and chemosensory ERPs. Eur Arch Otorhinolaryngol 272:1945–1953

    Article  PubMed  Google Scholar 

  13. Han P, Zang Y, Akshita J, Hummel T (2019) Magnetic resonance imaging of human olfactory dysfunction. Brain Topogr 32:987–997

    Article  PubMed  Google Scholar 

  14. Rice L, Bisdas S (2017) The diagnostic value of FDG and amyloid PET in Alzheimer’s disease—a systematic review. Eur J Radiol 94:16–24

    Article  PubMed  Google Scholar 

  15. Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB (2020) Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7:1064–1074

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiaravalloti A, Pagani M, Micarelli A et al (2015) Cortical activity during olfactory stimulation in multiple chemical sensitivity: a (18)F-FDG PET/CT study. Eur J Nucl Med Mol Imaging 42:733–740

    Article  CAS  PubMed  Google Scholar 

  17. Shin SS, Bales JW, Edward Dixon C, Hwang M (2017) Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 11:591–610

    Article  PubMed  Google Scholar 

  18. Lötsch J, Ultsch A, Eckhardt M, Huart C, Rombaux P, Hummel T (2016) Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma. Neuroimage Clin 11:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang L, Wei Y, Yu D, Zhang J, Liu Y (2010) Olfactory and gustatory function in healthy adult Chinese subjects. Otolaryngol Head Neck Surg 143:554–560

    Article  PubMed  Google Scholar 

  20. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  21. Woo CW, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–419

    Article  PubMed  Google Scholar 

  22. Lieberman MD, Cunningham WA (2009) Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4:423–428

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fjaeldstad A, Fernandes HM, Van Hartevelt TJ et al (2017) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239

    Article  PubMed  Google Scholar 

  25. Oh YS, Kim JS, Hwang EJ, Lyoo CH (2018) Striatal dopamine uptake and olfactory dysfunction in patients with early Parkinson’s disease. Parkinsonism Relat Disord 56:47–51

    Article  PubMed  Google Scholar 

  26. Iannilli E, Gerber J, Frasnelli J, Hummel T (2007) Intranasal trigeminal function in subjects with and without an intact sense of smell. Brain Res 1139:235–244

    Article  CAS  PubMed  Google Scholar 

  27. Joshi A, Han P, Faria V, Larsson M, Hummel T (2020) Neural processing of olfactory-related words in subjects with congenital and acquired olfactory dysfunction. Sci Rep 10:14377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seubert J, Ohla K, Yokomukai Y, Kellermann T, Lundström JN (2015) Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling. Hum Brain Mapp 36:1662–1676

    Article  PubMed  Google Scholar 

  29. Frasnelli J, Lundström JN, Boyle JA, Djordjevic J, Zatorre RJ, Jones-Gotman M (2010) Neuroanatomical correlates of olfactory performance. Exp Brain Res 201:1–11

    Article  PubMed  Google Scholar 

  30. Rolls ET (2016) Functions of the anterior insula in taste, autonomic, and related functions. Brain Cogn 110:4–19

    Article  PubMed  Google Scholar 

  31. Frasnelli J, Schuster B, Hummel T (2007) Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex 17:2268–2275

    Article  PubMed  Google Scholar 

  32. Varney NR, Pinkston JB, Wu JC (2001) Quantitative PET findings in patients with posttraumatic anosmia. J Head Trauma Rehabil 16:253–259

    Article  CAS  PubMed  Google Scholar 

  33. Caminiti F, Ciurleo R, Bramanti P, Marino S (2013) Persistent anosmia in a traumatic brain injury patient: role of orbitofrontal cortex. Brain Inj 27:1715–1718

    Article  PubMed  Google Scholar 

  34. Courtiol E, Wilson DA (2015) The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction. Front Neural Circuits 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702

    Article  CAS  PubMed  Google Scholar 

  36. Kubota S, Masaoka Y, Sugiyama H et al (2020) Hippocampus and parahippocampus volume reduction associated with impaired olfactory abilities in subjects without evidence of cognitive decline. Front Hum Neurosci 14:556519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hummel T, Fliessbach K, Abele M et al (2010) Olfactory FMRI in patients with Parkinson’s disease. Front Integr Neurosci 4:125

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lian TH, Zhu WL, Li SW et al (2019) Clinical, structural, and neuropathological features of olfactory dysfunction in patients with Alzheimer’s Disease. J Alzheimers Dis 70:413–423

    Article  PubMed  CAS  Google Scholar 

  39. Brand G, Millot JL, Henquell D (2001) Complexity of olfactory lateralization processes revealed by functional imaging: a review. Neurosci Biobehav Rev 25:159–166

    Article  CAS  PubMed  Google Scholar 

  40. Zelano C, Bensafi M, Porter J et al (2005) Attentional modulation in human primary olfactory cortex. Nat Neurosci 8:114–120

    Article  CAS  PubMed  Google Scholar 

  41. Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128:18–23

    Article  CAS  PubMed  Google Scholar 

  42. Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C (2019) Characterizing functional pathways of the human olfactory system. Elife 8:e47177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Korshunov KS, Blakemore LJ, Trombley PQ (2020) Illuminating and sniffing out the neuromodulatory roles of dopamine in the retina and olfactory bulb. Front Cell Neurosci 14:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meunier D, Fonlupt P, Saive AL, Plailly J, Ravel N, Royet JP (2014) Modular structure of functional networks in olfactory memory. Neuroimage 95:264–275

    Article  PubMed  Google Scholar 

  45. Löhle M, Wolz M, Beuthien-Baumann B et al (2020) Olfactory dysfunction correlates with putaminal dopamine turnover in early de novo Parkinson’s disease. J Neural Transm (Vienna) 127:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Junqi Li, Ziwei Zhu and other technicians from the Nuclear Medicine Department of Beijing Anzhen Hospital, for their help and support during the experimental scanning.

Funding

This study was supported by Beijing Hospitals Authority Youth Program (QML20190617), Beijing Science and Technology Nova Program (Z201100006820086), Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (XMLX202136), Natural Science Foundation of China (82000954), Beijing Hospitals Authority' Mission Plan (SML20190601), and Beijing Scholars Program (No. 051).

Author information

Authors and Affiliations

Authors

Contributions

XG drafted the manuscript and analyzed the date. DW revised the manuscript, designed the study and analyzed the date. XL contributed to the methodology. BS analyzed the date. ZS and BN contributed to the methodology and interpretation of data. XZ contributed to the vital instruments and medicines. YW designed the study, revised the manuscript, supervised the study, and obtained the funding.

Corresponding author

Correspondence to Yongxiang Wei.

Ethics declarations

Conflict of interest

None of the authors has a potential conflict of interest.

Ethics approval

This study was approved by the Ethics Committee at Beijing Anzhen Hospital (Beijing, China; Approval No.2019015X). The study design complied with the criteria of the Declaration of Helsinki for Medical Research involving Human Subjects.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the images in figures.

Software

MATLAB 2013a, Medical image Analysis, RRID:SCR_013499.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wu, D., Li, X. et al. Altered glucose metabolism of the olfactory-related cortices in anosmia patients with traumatic brain injury. Eur Arch Otorhinolaryngol 278, 4813–4821 (2021). https://doi.org/10.1007/s00405-021-06754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06754-0

Keywords

Navigation