Skip to main content
Log in

Predicting penetration–aspiration through quantitative swallow measures of children: a videofluoroscopic study

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Quantitative measures have improved the reliability and accuracy in interpretation and reporting of videofluoroscopy (VFSS). Associations between quantitative VFSS measures and swallow safety in children are not widely reported. The ability to predict aspiration in children, even if not observed during brief VFSS, will improve diagnostic reporting and potentially reduce the need for extended radiation time. The aims of this study were to determine associations between quantitative fluoroscopic swallow measures and penetration–aspiration and to predict likelihood of penetration–aspiration.

Methods

We selected videofluoroscopic data of 553 children from a pediatric hospital database for this single-center retrospective observational study. A standard protocol of VFSS administration was used and data were recorded at 30 frames-per-second. A set of quantitative and descriptive swallow measures was obtained using a specialized software with satisfactory inter-rater and intra-rater reliability. Binomial logistic regression with backward likelihood ratio was conducted, while controlling for age, gender, and etiology.

Results

We found bolus clearance ratio (BCR), pharyngeal constriction ratio (PCR), duration to hyoid maximal elevation (Hdur), and total pharyngeal transit time (TPT) to be predictive of penetration–aspiration in children. PCR was the most predictive of penetration–aspiration in children (61.5%). Risk of aspiration was more than 100 times, when BCR =  ≥ 0.1, TPT =  ≥ 2 s, Hdur =  > 1 s or PCR =  ≥ 0.2 (p < 0.05 for all measures).

Conclusion

The results confirm the potential of objective quantitative swallow measures in predicting the risk of aspiration in children with dysphagia. These parameters provide predictive measures of aspiration risk that are clinically useful in identifying children of concern, even if no aspiration is observed during VFSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dodrill P, Gosa MM (2015) Pediatric dysphagia: Physiology, assessment, and management. Ann Nutr Metab 66:24–31. https://doi.org/10.1159/000381372

    Article  CAS  PubMed  Google Scholar 

  2. Arvedson JC (2008) Assessment of pediatric dysphagia and feeding disorders: clinical and instrumental approaches. Dev Disabil Res Rev 14:118–127. https://doi.org/10.1002/ddrr.17

    Article  PubMed  Google Scholar 

  3. Steele C, Cichero J (2014) Physiological factors related to aspiration risk: a systematic review. Dysphagia 29:295–304. https://doi.org/10.1007/s00455-014-9516-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leonard R (2019) Predicting aspiration risk in patients with dysphagia: evidence from fluoroscopy. Laryngoscope Investig Otolaryngol 4:83–88. https://doi.org/10.1002/lio2.226

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leonard R, Kendall K (2019) Dysphagia assessment and treatment planning: a team approach, 4th edn. Plural Publishing, San Diego

    Google Scholar 

  6. Arvedson JC, Lefton-Greif MA (2017) Instrumental assessment of pediatric dysphagia. Semin Speech Lang 38:135–146. https://doi.org/10.1055/s-0037-1599111

    Article  PubMed  Google Scholar 

  7. Henderson M, Miles A, Holgate V, Peryman S, Allen J (2016) Application and verification of quantitative objective videofluoroscopic swallowing measures in a pediatric population with dysphagia. J Pediatr 178:200–205. https://doi.org/10.1016/j.jpeds.2016.07.050

    Article  PubMed  Google Scholar 

  8. Martin-Harris B, Brodsky M, Michel Y et al (2008) MBS measurement tool for swallow impairment—MBSImp: establishing a standard. Dysphagia 23:392–405. https://doi.org/10.1007/s00455-008-9185-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin-Harris B, Carson KA, Pinto JM, Lefton-Greif MA (2020) BaByVFSSImP© a novel measurement tool for videofluoroscopic assessment of swallowing impairment in bottle-fed babies: establishing a standard. Dysphagia 35:90–98. https://doi.org/10.1007/s00455-019-10008-x

    Article  PubMed  Google Scholar 

  10. Leonard R, Kendall K (1997) Dysphagia assessment and treatment planning: a team approach. Cengage Learning, Boston

    Google Scholar 

  11. Leonard R, Kendall K, McKenzie S (2004) Structural displacements affecting pharyngeal constriction in nondysphagic elderly and nonelderly adults. Dysphagia 19:133–141

    PubMed  Google Scholar 

  12. Leonard RJ, Kendall KA, McKenzie S, Gonçalves MI, Walker A (2000) Structural displacements in normal swallowing: a videofluoroscopic study. Dysphagia 15:146–152. https://doi.org/10.1007/s004550010017

    Article  CAS  PubMed  Google Scholar 

  13. Kendall K, McKenzie S, Leonard R, Gonçalves M, Walker A (2000) Timing of events in normal swallowing: a videofluoroscopic study. Dysphagia 15:74–83. https://doi.org/10.1007/s004550010004

    Article  CAS  PubMed  Google Scholar 

  14. McGrattan KE, McGhee HC, McKelvey KL et al (2019) Capturing infant swallow impairment on videofluoroscopy: timing matters. Pediatr Radiol. https://doi.org/10.1007/s00247-019-04527-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Riley A, Miles A, Steele CM (2018) An exploratory study of hyoid visibility, position, and swallowing-related displacement in a pediatric population. Dysphagia 34:248–256. https://doi.org/10.1007/s00455-018-9942-3

    Article  PubMed  Google Scholar 

  16. Sales A, Giacheti C, Cola P, da Silva R (2017) Qualitative and quantitative analysis of oropharyngeal swallowing in Down syndrome. CODAS. https://doi.org/10.1590/2317-1782/20172017005

    Article  PubMed  Google Scholar 

  17. Weckmueller J, Easterling C, Arvedson J (2011) Preliminary temporal measurement analysis of normal oropharyngeal swallowing in infants and young children. Dysphagia 26:135–143. https://doi.org/10.1007/s00455-010-9283-3

    Article  PubMed  Google Scholar 

  18. Gosa MM, Suiter DM, Kahane JC (2015) Reliability for identification of a select set of temporal and physiologic features of infant swallows. Dysphagia 30:365–372. https://doi.org/10.1007/s00455-015-9610-9

    Article  PubMed  Google Scholar 

  19. Choi K, Ryu J, Kim M, Kang J, Yoo S (2011) Kinematic analysis of dysphagia: significant parameters of aspiration related to bolus viscosity. Dysphagia 26:392–398. https://doi.org/10.1007/s00455-011-9325-5

    Article  PubMed  Google Scholar 

  20. Power ML, Hamdy S, Goulermas JY, Tyrrell PJ, Turnbull I, Thompson DG (2009) Predicting aspiration after hemispheric stroke from timing measures of oropharyngeal bolus flow and laryngeal closure. Dysphagia 24:257–264. https://doi.org/10.1007/s00455-008-9198-4

    Article  PubMed  Google Scholar 

  21. Seo HG, Oh B, Han TR (2016) Swallowing kinematics and factors associated with laryngeal penetration and aspiration in stroke survivors with dysphagia. Dysphagia 31:160–168. https://doi.org/10.1007/s00455-015-9670-x

    Article  PubMed  Google Scholar 

  22. Steele CM, Bailey GL, Chau T, Molfenter SM, Oshalla M, Waito AA, Zoratto DC (2011) The relationship between hyoid and laryngeal displacement and swallowing impairment. Clin Otolaryngol 36:30–36. https://doi.org/10.1111/j.1749-4486.2010.02219.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yip H, Leonard R, Belafsky PC (2006) Can a fluoroscopic estimation of pharyngeal constriction predict aspiration? Otolaryngol Head Neck Surg 35:215–217. https://doi.org/10.1016/j.otohns.2006.03.016

    Article  Google Scholar 

  24. Hardin AP, Hackell JM (2017) Age limit of pediatrics. Pediatr Am Acad Pediatr 140:e20172151. https://doi.org/10.1542/peds.2017-2151

    Article  Google Scholar 

  25. International Dysphagia Diet Standardisation Initiative, IDDSI (2016) Drink testing methods: IDDSI flow test. https://iddsi.org/framework/. Accessed 12 Apr 2020

  26. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL (1996) A penetration-aspiration scale. Dysphagia 11:93–98. https://doi.org/10.1007/BF00417897

    Article  CAS  PubMed  Google Scholar 

  27. Daggett A, Logemann J, Rademaker A, Pauloski B (2006) Laryngeal penetration during deglutition in normal subjects of various ages. Dysphagia 21:270–274. https://doi.org/10.1007/s00455-006-9051-6

    Article  PubMed  Google Scholar 

  28. Steele C, Grace-Martin K (2017) Reflections on clinical and statistical use of the penetration-aspiration scale. Dysphagia 32:601–616. https://doi.org/10.1007/s00455-017-9809-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koichiro M, Palmer J (2008) Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehab Clin N Am 19:691–707. https://doi.org/10.1016/j.pmr.2008.06.001

    Article  Google Scholar 

  30. Newman L, Cleveland R, Blickman J, Hillman R, Jaramillo D (1991) Videofluoroscopic analysis of the infant swallow. Invest Radiol 26:870–873

    Article  CAS  PubMed  Google Scholar 

  31. Logemann J, Pauloski BR, Colangelo L, Lazarus C, Fujiu M, Kahrilas PJ (1995) Effects of a sour bolus on oropharyngeal swallowing measures in patients with neurogenic dysphagia. J Speech Hear Res 38:556–563

    Article  CAS  PubMed  Google Scholar 

  32. Leonard R (2017) Two methods for quantifying pharyngeal residue on fluoroscopic swallow studies: reliability assessment. Ann Otolaryngol Rhinol 4:1168

    Google Scholar 

  33. Robbins J, Coyle J, Rosenbek J, Roecker E, Wood J (1999) Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia 14:228–232. https://doi.org/10.1007/PL00009610

    Article  CAS  PubMed  Google Scholar 

  34. Dodds WJ, Logemann JA, Stewart ET (1990) Radiologic assessment of abnormal oral and pharyngeal phases of swallowing. AJR Am J Roentgenol 154:965–974. https://doi.org/10.2214/ajr.154.5.2108570

    Article  CAS  PubMed  Google Scholar 

  35. Goldfield EC, Smith V (2010) Preterm infant swallowing and respiration coordination during oral feeding: Relationship to dysphagia and aspiration. Curr Pediatr Rev 6:143–150. https://doi.org/10.2174/157339610791561178

    Article  Google Scholar 

  36. Byeon H, Koh HW (2016) The duration of stage transition during pharyngeal swallowing among young-elderly, and mid-elderly individuals. J Phys Ther Sci 28:1505–1507. https://doi.org/10.1589/jpts.28.1505

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hedström J, Tuomi L, Andersson M, Dotevall H, Osbeck H, Finizia C (2017) Within-bolus variability of the penetration-aspiration scale across two subsequent swallows in patients with head and neck cancer. Dysphagia 32:683–690. https://doi.org/10.1007/s00455-017-9814-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kwak SG, Kim JH (2017) Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol Korean Soc Anesthesiol 70:144–156. https://doi.org/10.4097/kjae.2017.70.2.144

    Article  Google Scholar 

  40. Chin R, Lee B (2008) Chapter 15: analysis of data principles and practice of clinical trial medicine. Academic Press, Elsevier

    Google Scholar 

  41. Bisch EM, Logemann JA, Rademaker AW, Kahrilas PJ, Lazarus CL (1994) Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res ASHA. https://doi.org/10.1044/jshr.3705.1041

    Article  Google Scholar 

  42. Lazarus CL, Logemann JA, Rademaker AW, Kahrilas PJ, Pajak T, Lazar R, Halper A (1993) Effects of bolus volume, viscosity, and repeated swallows in nonstroke subjects and stroke patients. Arch Phys Med Rehabil 4:1066–1070. https://doi.org/10.1016/0003-9993(93)90063-G

    Article  Google Scholar 

  43. Diaz-Quijano FA (2012) A simple method for estimating relative risk using logistic regression. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-12-14

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dharmarathna I, Miles A, Allen J (2020) Twenty years of quantitative instrumental measures of swallowing in children: a systematic review. Eur J Pediatr 179:203–223. https://doi.org/10.1007/s00431-019-03546-x

    Article  PubMed  Google Scholar 

  45. Rommel N, Borgers C, Van Beckevoort D, Goeleven A, Dejaeger E, Omari T (2015) Bolus residue scale: an easy-to-use and reliable videofluoroscopic analysis tool to score bolus residue in patients with dysphagia. Int J Otolaryngol 2015:780197–780207. https://doi.org/10.1155/2015/780197

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eisenhuber E, Schima W, Schober E, Pokieser P, Stadler A, Scharitzer M, Oschatz E (2002) Videofluoroscopic assessment of patients with dysphagia: pharyngeal retention is a predictive factor for aspiration. Am Roentgen Ray Soc 178:393–398. https://doi.org/10.2214/ajr.178.2.1780393

    Article  Google Scholar 

  47. Molfenter S, Steele C (2013) The relationship between residue and aspiration on the subsequent swallow: an application of the normalized residue ratio scale. Dysphagia 28:494–500

    Article  PubMed  Google Scholar 

  48. Leonard R, Rees C, Belafsky P, Allen J (2011) Fluoroscopic surrogate for pharyngeal strength: the pharyngeal constriction ratio (PCR). Dysphagia 26:13–17. https://doi.org/10.1007/s00455-009-9258-4

    Article  PubMed  Google Scholar 

  49. Kendall KA, Leonard RJ (2001) Pharyngeal constriction in elderly dysphagic patients compared with young and elderly nondysphagic controls. Dysphagia 16:272–278. https://doi.org/10.1007/s00455-001-0086-4

    Article  CAS  PubMed  Google Scholar 

  50. Johnson ER, McKenzie SW (1993) Kinematic pharyngeal transit times in myopathy: evaluation for dysphagia. Dysphagia 8:35–40

    Article  CAS  PubMed  Google Scholar 

  51. Kendall K, Leonard R, McKenzie S (2004) Common medical conditions in the elderly: impact on pharyngeal bolus transit. Dysphagia 19:71–77. https://doi.org/10.1007/s00455-003-0502-z

    Article  PubMed  Google Scholar 

  52. Dharmarathna I, Miles A, Allen J (2020) Quantitative video-fluoroscopic analysis of swallowing in infants. Int J Pediatr Otorhinolaryngol. https://doi.org/10.1016/j.ijporl.2020.110315

    Article  PubMed  Google Scholar 

  53. Butler SG, Stuart A, Leng X, Rees C, Williamson J, Kritchevsky SB (2010) Factors influencing aspiration during swallowing in healthy older adults. Laryngoscope. https://doi.org/10.1002/lary.21116

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM (2010) Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope 120:2367–2373. https://doi.org/10.1002/lary.21150

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mayerl CJ, Myrla AM, Gould FDH, Bond LE, Stricklen BM, German RZ (2020) Swallow safety is determined by bolus volume during infant feeding in an animal model. Dysphagia. https://doi.org/10.1007/s00455-020-10118-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the speech-language therapists of the Starship Children’s Hospital, Auckland, New Zealand, for their support in maintaining VFSS protocol and collecting VFSS data; Daniel Barnett, The University of Auckland, New Zealand, for statistical support and Hasith Kandaudahewa, University of Colombo, Sri Lanka, for support in formatting.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isuru Dharmarathna.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethics approval

The University of Auckland Human Participants Ethics Committee (application number: 9263).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmarathna, I., Miles, A. & Allen, J. Predicting penetration–aspiration through quantitative swallow measures of children: a videofluoroscopic study. Eur Arch Otorhinolaryngol 278, 1907–1916 (2021). https://doi.org/10.1007/s00405-021-06629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06629-4

Keywords

Navigation