Skip to main content

Advertisement

Log in

Circulating microRNAs modulating glycolysis as non-invasive prognostic biomarkers of HNSCC

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

The identification of prognostic non-invasive biomarkers is a priority for cancer patients’ care. Circulating microRNA (miRNAs) have been described in numerous human malignancies as diagnostic, prognostic, and therapeutic cancer biomarkers. The aim of our study was to analyze the expression profile of a set of miRNAs, involved in the modulation of the glycolytic pathway, as prognostic factors in human head and neck squamous cell carcinomas (HNSCC).

Methods

Serum samples of 54 patients with untreated HNSCC were obtained at the time of diagnosis. The prognostic value of circulating miR-26b, miR-124, miR-155 and miR-375 was evaluated towards disease-free survival.

Results

We found that there were optimal miRNAs cut-off values for lower risk of recurrence in HNSCC patients. Kaplan–Meier curves showed that higher levels of miR-26b and lower levels of miR-155 were associated with better disease-free survival rates. In the multivariate analysis, patients with serum miR-26b > 0.062 and miR-155 < 0.159 presented more than 2.9 times lower risk of poor outcome.

Conclusion

Our results suggest that two miRNAs that modulate the glycolytic pathway, miR-26b and miR-155, are independently associated with the risk of recurrence in patients with HNSCC. The overall results in this study supports the evidence that the glucose homeostasis may be a target to improve the outcomes for patients with HNSCC.

Level of evidence

Individual retrospective cohort study (2b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quintana A, Avilés FX, Terra X et al (2013) Overexpression of the nuclear factor-kappa B (p65) in association with local failure in patients with head and neck carcinoma undergong radiotherapy or chemoradiotherapy. Head Neck. https://doi.org/10.1002/hed.22979

    Article  PubMed  Google Scholar 

  2. Ho AS, Kraus DH, Ganly I et al (2014) Decision making in the management of recurrent head and neck cancer. Head Neck 36:144–151. https://doi.org/10.1002/hed.23227

    Article  PubMed  Google Scholar 

  3. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 1:1–14

    Google Scholar 

  4. Fadaka AO, Pretorius A (2019) Biomarkers for stratification in colorectal cancer: microRNAs. Cancer Control 26:1–11. https://doi.org/10.1177/1073274819862784

    Article  Google Scholar 

  5. Chen B, Li H, Zeng X et al (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228. https://doi.org/10.1186/1479-5876-10-228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ortega AD, Sánchez-Aragó M, Giner-Sánchez D et al (2009) Glucose avidity of carcinomas. Cancer Lett 276:125–135. https://doi.org/10.1016/j.canlet.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Yan J, Lin J, He X (2014) The emerging role of miR-375 in cancer. Int J Cancer 1018:1011–1018. https://doi.org/10.1002/ijc.28563

    Article  CAS  Google Scholar 

  8. Kinoshita T, Hanazawa T, Nohata N et al (2012) The functional significance of microRNA-375 in human squamous cell carcinoma: aberrant expression and effects on cancer pathways. J Hum Genet 57:556–563. https://doi.org/10.1038/jhg.2012.75

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Lu C, Chu W et al (2017) MicroRNA-124 suppresses proliferation and glycolysis in non–small cell lung cancer cells by targeting AKT–GLUT1/HKII. Tumor Biol 39:101042831770621. https://doi.org/10.1177/1010428317706215

    Article  CAS  Google Scholar 

  10. Zhang M, Piao L, Datta J et al (2015) miR-124 regulates the epithelial-restricted with serine box/epidermal growth factor receptor signaling axis in head and neck squamous cell carcinoma. Mol Cancer Ther 14:2313–2320. https://doi.org/10.1158/1535-7163.MCT-14-1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arora A, Singh S, Bhatt AN et al (2015) Interplay between metabolism and oncogenic process: role of microRNAs. Transl Oncogenom 7:11–27. https://doi.org/10.4137/TOG.S29652

    Article  CAS  Google Scholar 

  12. Xu G, Shi C, Ji C et al (2014) MiR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep 10:223–228. https://doi.org/10.3892/or.2015.3797

    Article  CAS  Google Scholar 

  13. Avilés-Jurado FXFXFX, Flores JCJCJCJC, Gumà J et al (2017) Prognostic relevance of insulin resistance on disease-free survival in head and neck squamous cell carcinomas: preliminary results. Head Neck 39:2501–2511. https://doi.org/10.1002/hed.24919

    Article  PubMed  Google Scholar 

  14. Chiesa F, Tradati N, Mauri S et al (1998) Prognostic factors in head and neck oncology: a critical appraisal for use in clinical practice. Anticancer Res 18:4769–4776

    CAS  PubMed  Google Scholar 

  15. Wang J, Zhang K, Liu S, Sen S (2014) Tumor-associated circulating MicroRNAs as biomarkers of cancer. Molecules 19:1912–1938. https://doi.org/10.3390/molecules19021912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593. https://doi.org/10.1016/j.ygyno.2010.07.021

    Article  CAS  PubMed  Google Scholar 

  17. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344. https://doi.org/10.1126/science.1193494

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Zhao X, Luo M et al (2014) The pro-apoptotic role of the regulatory feedback loop between miR-124 and PKM1/HNF4α in colorectal cancer cells. Int J Mol Sci 15:4318–4332. https://doi.org/10.3390/ijms15034318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Fan Q, Li J et al (2017) MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma. Exp Cell Res 351:100–108. https://doi.org/10.1016/j.yexcr.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Jin L, Miao J, Liu Y et al (2017) Icaritin induces mitochondrial apoptosis by up-regulating miR-124 in human oral squamous cell carcinoma cells. Biomed Pharmacother 85:287–295. https://doi.org/10.1016/j.biopha.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Ling Z, Hao Y et al (2017) MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 8:25005–25020. https://doi.org/10.18632/oncotarget.15334

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim S, Lee E, Jung J et al (2018) microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene 37:2982–2991. https://doi.org/10.1038/s41388-018-0124-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. La ShuS, Yang Y, Allen CL et al (2018) Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci Rep 8:12905. https://doi.org/10.1038/s41598-018-31323-7

    Article  CAS  Google Scholar 

  24. Xu Y, Han S, Lei K et al (2016) Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev 25:481–489. https://doi.org/10.1097/CEJ.0000000000000205

    Article  CAS  PubMed  Google Scholar 

  25. Lv X, Yao L, Zhang J et al (2016) Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism. Mol Med Rep 14:1332–1338. https://doi.org/10.3892/mmr.2016.5394

    Article  CAS  PubMed  Google Scholar 

  26. Wang JL, Wang X, Yang D, Shi WJ (2016) The expression of MicroRNA-155 in plasma and tissue is matched in human laryngeal squamous cell carcinoma. Yonsei Med J 57:298–305. https://doi.org/10.3349/ymj.2016.57.2.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian L, Zhang J, Ren X et al (2017) Overexpression of miR-26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget 8:79023–79033. https://doi.org/10.18632/oncotarget.20784

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fukumoto I, Hanazawa T, Kinoshita T et al (2015) MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer 112:891–900. https://doi.org/10.1038/bjc.2015.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Liang Y, Lv H et al (2017) miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway. Gene 625:1–9. https://doi.org/10.1016/j.gene.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24. https://doi.org/10.1016/j.semcancer.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  31. Israël M, Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer 10:70. https://doi.org/10.1186/1476-4598-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du J-Y, Wang L-F, Wang Q, Yu L-D (2015) miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep 33:1890–1898. https://doi.org/10.3892/or.2015.3797

    Article  CAS  PubMed  Google Scholar 

  33. Linxweiler J, Junker K (2020) Extracellular vesicles in urological malignancies: an update. Nat Rev Urol 17:11–27. https://doi.org/10.1038/s41585-019-0261-8

    Article  PubMed  Google Scholar 

  34. Setti G, Pezzi ME, Viani MV et al (2020) Salivary MicroRNA for diagnosis of cancer and systemic diseases: a systematic review. Int J Mol Sci 21:907. https://doi.org/10.3390/ijms21030907

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from Plan Estatal de I + D + I of the Instituto de Salud Carlos III (FIS PI15/02047 and FIS PI18/0844 to FX A-J and IV, and FIS PI19/01661 to XL). Fondo Europeo de Desarrollo Regional (FEDER), A Way to Build Europe. XT is a Serra-Húnter fellow. Co-financed by Asociación Española Contra el Cáncer by the Project LAB AECC 2018-LABAE18025AVIL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesc Xavier Avilés-Jurado or Carla Meler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This work has the approval of the centre’s ethics committee (Ref. 15/02047).

Informed consent

All patients in this study have signed an informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilés-Jurado, F.X., Muñoz, C., Meler, C. et al. Circulating microRNAs modulating glycolysis as non-invasive prognostic biomarkers of HNSCC. Eur Arch Otorhinolaryngol 278, 1585–1594 (2021). https://doi.org/10.1007/s00405-020-06240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-06240-z

Keywords

Navigation