Skip to main content
Log in

Sound-localisation performance in patients with congenital unilateral microtia and atresia fitted with an active middle ear implant

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

This study assessed the safety and sound-localisation ability of the Vibrant Soundbridge (VSB) (Med-EL, Innsbruck, Austria) in patients with unilateral microtia and atresia (MA).

Methods

This was a single-centre retrospective research study. Twelve subjects with unilateral conductive hearing loss (UCHL) caused by ipsilateral MA were recruited, each of whom underwent VSB implantation and auricular reconstruction. The bone-conduction (BC) threshold was measured postoperatively, and the accuracy of sound localisation was evaluated at least 6 months after surgery. Horizontal sound-localisation performance was investigated with the VSB activated and inactivated, at varying sound stimuli levels (65, 70 and 75 dB SPL). Localisation benefit was analysed via the mean absolute error (MAE).

Results

There was no statistical difference in mean BC threshold of impaired ears measured preoperatively and postoperatively. When compared with VSB-inactivated condition, the MAE increased significantly in unilateral MA patients in the VSB-activated condition. Besides, sound-localisation performance worsened remarkably when sound was presented at 70 dB SPL and 75 dB SPL. Regarding the side of signal location, the average MAE with the VSB device was much higher than that without the VSB when sound was from the normal-hearing ear. However, no significant difference was observed when sound was located from the impaired ear.

Conclusion

This study demonstrates that in patients with unilateral MA, the VSB device does not affect inner-ear function. Sound-localisation ability is not improved, but deteriorated at follow-up. Our results suggest that the VSB-aided localisation abilities may be related to the thresholds between the ears, plasticity of auditory system and duration of use of VSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luquetti DV, Heike CL, Hing AV et al (2012) Microtia: epidemiology and genetics. Am. J. Med. Genet. A 158:124–139. https://doi.org/10.1002/ajmg.a.34352

    Article  Google Scholar 

  2. Alasti F, van Camp G (2009) Genetics of microtia and associated syndromes. J Med Genet 46:361–369. https://doi.org/10.1136/jmg.2008.062158

    Article  CAS  PubMed  Google Scholar 

  3. Abdel-Aziz M (2013) Congenital aural atresia. J Craniofac Surg 24:e418–e422. https://doi.org/10.1097/SCS.0b013e3182942d11

    Article  PubMed  Google Scholar 

  4. Wang D, Zhao S, Zhang Q et al (2016) Vibrant SoundBridge combined with auricle reconstruction for bilateral congenital aural atresia. Int J Pediatr Otorhinolaryngol 86:240–245. https://doi.org/10.1016/j.ijporl.2016.05.006

    Article  PubMed  Google Scholar 

  5. Qian J, Li Z, Liu T et al (2017) Auricular reconstruction in hemifacial microsomia with an expanded two-flap method. Plast Reconstr Surg 139:1200–1209. https://doi.org/10.1097/PRS.0000000000003280

    Article  CAS  PubMed  Google Scholar 

  6. Bly RA, Bhrany AD, Murakami CS et al (2016) Microtia reconstruction. Facial Plast Surg Clin North Am 24:577–591. https://doi.org/10.1016/j.fsc.2016.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leinung M, Zaretsky E, Lange BP et al (2017) Vibrant Soundbridge in preschool children with unilateral aural atresia: acceptance and benefit. Eur Arch Otorhinolaryngol 274:159–165. https://doi.org/10.1007/s00405-016-4265-1

    Article  CAS  PubMed  Google Scholar 

  8. Zahnert T, Mlynski R, Löwenheim H et al (2018) Long-term outcomes of vibroplasty coupler implantations to treat mixed/conductive hearing loss. Audiol Neurotol 23:316–325. https://doi.org/10.1159/000495560

    Article  Google Scholar 

  9. Lailach S, Zahnert T, Maurer J et al (2020) The vibrating ossicular prosthesis in children and adolescents: a retrospective study. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-019-05667-3

    Article  PubMed  Google Scholar 

  10. Kumpik DP, King AJ (2019) A review of the effects of unilateral hearing loss on spatial hearing. Hear Res 372:17–28. https://doi.org/10.1016/j.heares.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brkic FF, Riss D, Auinger A et al (2019) Long-term outcome of hearing rehabilitation with an active middle ear implant. Laryngoscope 129:477–481. https://doi.org/10.1002/lary.27513

    Article  PubMed  Google Scholar 

  12. Risoud M, Hanson J-N, Gauvrit F et al (2018) Sound source localization. Eur Ann Otorhinolaryngol Head Neck Dis 135:259–264. https://doi.org/10.1016/j.anorl.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  13. Priwin C, Jönsson R, Hultcrantz M et al (2007) BAHA in children and adolescents with unilateral or bilateral conductive hearing loss: a study of outcome. Int J Pediatr Otorhinolaryngol 71:135–145. https://doi.org/10.1016/j.ijporl.2006.09.014

    Article  PubMed  Google Scholar 

  14. Agterberg MJH, Snik AFM, Hol MKS et al (2011) Improved horizontal directional hearing in bone conduction device users with acquired unilateral conductive hearing loss. J Assoc Res Otolaryngol 12:1–11. https://doi.org/10.1007/s10162-010-0235-2

    Article  PubMed  Google Scholar 

  15. Vogt K, Frenzel H, Ausili SA et al (2018) Improved directional hearing of children with congenital unilateral conductive hearing loss implanted with an active bone-conduction implant or an active middle ear implant. Hear Res 370:238–247. https://doi.org/10.1016/j.heares.2018.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson NJ, Kane SLG, Corbin NE et al (2019) Spatial hearing as a function of presentation level in moderate-to-severe unilateral conductive hearing loss. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000002475

    Article  PubMed  Google Scholar 

  17. Nelissen RC, Agterberg MJ, Hol MK et al (2016) Three-year experience with the Sophono in children with congenital conductive unilateral hearing loss: tolerability, audiometry, and sound localization compared to a bone-anchored hearing aid. Eur Arch Otorhinolaryngol 273:3149–3156. https://doi.org/10.1007/s00405-016-3908-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vyskocil E, Liepins R, Kaider A et al (2017) Sound localization in patients with congenital unilateral conductive hearing loss with a transcutaneous bone conduction implant. Otol Neurotol 38:318–324. https://doi.org/10.1097/mao.0000000000001328

    Article  PubMed  Google Scholar 

  19. Koci V, Seebacher J, Weichbold V et al (2016) Improvement of sound source localization abilities in patients bilaterally supplied with active middle ear implants. Acta Otolaryngol 136:692–698. https://doi.org/10.3109/00016489.2016.1155232

    Article  PubMed  Google Scholar 

  20. Vogt K, Wasmann J-W, John Van Opstal A et al (2020) Contribution of spectral pinna cues for sound localization in children with congenital unilateral conductive hearing loss after hearing rehabilitation. Hear Res. https://doi.org/10.1016/j.heares.2019.107847

    Article  PubMed  Google Scholar 

  21. Maier H, Baumann U, Baumgartner WD et al (2018) Minimal reporting standards for active middle ear hearing implants. Audiol Neurootol 23:105–115. https://doi.org/10.1159/000490878

    Article  PubMed  PubMed Central  Google Scholar 

  22. Slattery WH, Middlebrooks JC (1994) Monaural sound localization: acute versus chronic unilateral impairment. Hear Res 75:38–46. https://doi.org/10.1016/0378-5955(94)90053-1

    Article  PubMed  Google Scholar 

  23. Agterberg MJH, Snik AFM, Hol MKS et al (2012) Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: improved directional hearing with a bone-conduction device. Hear Res 286:9–18. https://doi.org/10.1016/j.heares.2012.02.012

    Article  PubMed  Google Scholar 

  24. Van Wanrooij MM (2004) Contribution of head shadow and pinna cues to chronic monaural sound localization. J Neurosci 24:4163–4171. https://doi.org/10.1523/jneurosci.0048-04.2004

    Article  PubMed  PubMed Central  Google Scholar 

  25. Webster DB (1983) Auditory neuronal sizes after a unilateral conductive hearing loss. Exp Neurol 79:1–140. https://doi.org/10.1016/0014-4886(83)90384-9

    Article  Google Scholar 

  26. van Wieringen A, Boudewyns A, Sangen A et al (2019) Unilateral congenital hearing loss in children: challenges and potentials. Hear Res 372:29–41. https://doi.org/10.1016/j.heares.2018.01.010

    Article  PubMed  Google Scholar 

  27. Popescu MV, Polley DB (2010) Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron 65:718–731. https://doi.org/10.1016/j.neuron.2010.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhuang X, Sun W, Xu-Friedman MA (2017) Changes in properties of auditory nerve synapses following conductive hearing loss. J Neurosci 37:323–332. https://doi.org/10.1523/JNEUROSCI.0523-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kesser BW, Krook K, Gray LC (2013) Impact of unilateral conductive hearing loss due to aural atresia on academic performance in children. Laryngoscope 123:2270–2275. https://doi.org/10.1002/lary.24055

    Article  PubMed  Google Scholar 

  30. Lee MY, Kim DH, Park SK et al (2017) Disappearance of contralateral dominant neural activity of auditory cortex after single-sided deafness in adult rats. Neurosci Lett 657:171–178. https://doi.org/10.1016/j.neulet.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  31. Keating P, King AJ (2013) Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 7:1–20. https://doi.org/10.3389/fnsys.2013.00123

    Article  Google Scholar 

  32. Lauer AM, Dent ML, Sun W et al (2019) Effects of non-traumatic noise and conductive hearing loss on auditory system function. Neuroscience 407:182–191. https://doi.org/10.1016/j.neuroscience.2019.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yathiraj A, Vanaja CS (2015) Age related changes in auditory processes in children aged 6 to 10 years. Int J Pediatr Otorhinolaryngol 79:1224–1234. https://doi.org/10.1016/j.ijporl.2015.05.018

    Article  PubMed  Google Scholar 

  34. Gray L, Kesser B, Cole E (2009) Understanding speech in noise after correction of congenital unilateral aural atresia: effects of age in the emergence of binaural squelch but not in use of head-shadow. Int J Pediatr Otorhinolaryngol 73:1281–1287. https://doi.org/10.1016/j.ijporl.2009.05.024

    Article  PubMed  Google Scholar 

  35. Asp F, Reinfeldt S (2018) Horizontal sound localisation accuracy in individuals with conductive hearing loss: effect of the bone conduction implant. Int J Audiol 57:657–664. https://doi.org/10.1080/14992027.2018.1470337

    Article  PubMed  Google Scholar 

  36. Firszt JB, Reeder RM, Dwyer NY et al (2015) Localization training results in individuals with unilateral severe to profound hearing loss. Hear Res 319:48–55. https://doi.org/10.1016/j.heares.2014.11.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Project of Capital Clinical Characteristic Application Research of Beijing Municipal Science and Technology Commission (Z171100001017079) and National Natural Science Foundation of China (No. 81770989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouqin Zhao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in present study were in line with the ethical standards. And ethical approvals were obtained from Beijing Tongren Hospital, Capital Medical University, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Liu, Y., Yang, J. et al. Sound-localisation performance in patients with congenital unilateral microtia and atresia fitted with an active middle ear implant. Eur Arch Otorhinolaryngol 278, 31–39 (2021). https://doi.org/10.1007/s00405-020-06049-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-06049-w

Keywords

Navigation