Skip to main content
Log in

Comparison of electrophysiological parameters between perimodiolar and lateral wall electrodes in paediatric cochlear implant users

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

(1) To compare the in vivo impedances of electrical contacts of the Nucleus Contour Advance (CA) perimodiolar electrodes and the Nucleus Slim Straight (SS) lateral wall electrodes. (2) To compare the relation between the electrode contact impedances and the behavioural T-/C-levels for both types of electrodes.

Methods

Retrospective case review in two quaternary otologic referral centres was performed. Data on the impedance of the electrode contacts and the T-/C-levels have been collected from 70 consecutive paediatric CI patients.

Results

(1) SS electrodes show significantly higher impedance values of the contacts compared to the CA electrodes. This can be explained by differences in the active surface of the electrode contacts and is true for the whole electrode arrays. (2) There are significant negative correlations observed between the impedances of the electrode contacts and the behaviourally measured T-/C-levels. (3) The strength correlation between the electrode impedances and the behavioural T-/C-levels is significantly higher and the T-/C-level variability is lower for the perimodiolar CA electrodes than for the lateral wall SS electrodes.

Conclusions

There exist significant differences in the contact impedance between different cochlear implant electrode arrays. These differences could influence the implant programming parameters and should be considered in any protocols related to automatic implant programming based on objective measures. The predictive value of the electrode impedances for the behavioural T-/C-levels is higher for the perimodiolar CA electrodes than for the lateral wall SS electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dhanasingh A, Jolly C (2017) An overview of cochlear implant electrode array designs. Hear Res 356:93–103. https://doi.org/10.1016/j.heares.2017.10.005

    Article  PubMed  Google Scholar 

  2. DeVries L, Scheperle R, Bierer JA (2016) Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-016-0557-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boyer E, Karkas A, Attye A et al (2015) Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000000705

    Article  PubMed  Google Scholar 

  4. Gibson P, Boyd P (2016) Optimal electrode design: Straight versus perimodiolar. Eur. Ann. Otorhinolaryngol, Head Neck Dis, p 133

    Google Scholar 

  5. Ramos-Macías A, Borkoski-Barreiro SA, Falcón-González JC, Ramos-De Miguel A (2018) Hearing preservation with the slim modiolar electrode nucleus CI532® cochlear implant: a preliminary experience. Audiol Neurotol. https://doi.org/10.1159/000486409

    Article  Google Scholar 

  6. Snels C, IntHout J, Mylanus E et al (2019) Hearing preservation in cochlear implant surgery. Otol Neurotol 40:145–153. https://doi.org/10.1097/MAO.0000000000002083

    Article  PubMed  Google Scholar 

  7. Wanna GB, Noble JH, Gifford RH et al (2015) Impact of intrascalar electrode location, electrode type, and angular insertion depth on residual hearing in cochlear implant patients: preliminary results. Otol Neurotol 36:1343–1348. https://doi.org/10.1097/MAO.0000000000000829

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zanetti D, Nassif N, Redaelli de Zinis LO (2015) Factors affecting residual hearing preservation in cochlear implantation. Acta Otorhinolaryngol Ital 35:433–441. https://doi.org/10.14639/0392-100X-619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soda-Merhy A, Gonzalez-Valenzuela L, Tirado-Gutierrez C (2008) Residual hearing preservation after cochlear implantation: comparison between straight and perimodiolar implants. Otolaryngol Head Neck Surg 139:399–404. https://doi.org/10.1016/j.otohns.2008.06.006

    Article  PubMed  Google Scholar 

  10. Mady LJ, Sukato DC, Fruit J et al (2017) Hearing preservation: does electrode choice matter? Otolaryngol Head Neck Surg (United States) 157:837–847. https://doi.org/10.1177/0194599817707167

    Article  Google Scholar 

  11. Doshi J, Johnson P, Mawman D et al (2015) Straight versus modiolar hugging electrodes. Otol Neurotol 36:223–227. https://doi.org/10.1097/MAO.0000000000000603

    Article  PubMed  Google Scholar 

  12. Moran M, Vandali A, Briggs RJS et al (2019) Speech perception outcomes for adult cochlear implant recipients using a lateral wall or perimodiolar array. Otol Neurotol 40:608–616. https://doi.org/10.1097/MAO.0000000000002189

    Article  PubMed  Google Scholar 

  13. Park LR, Teagle HFB, Brown KD et al (2017) Audiological outcomes and map characteristics in children with perimodiolar and slim straight array cochlear implants in opposite ears. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000001539

    Article  PubMed  Google Scholar 

  14. Molisz A, Zarowski A, Vermeiren A et al (2015) Postimplantation changes of electrophysiological parameters in patients with cochlear implants. Audiol Neurotol 20:222–228

    Article  Google Scholar 

  15. Saunders E, Cohen L, Aschendorff A et al (2002) Threshold, comfortable level and impedance changes as a function of electrode-modiolar distance. Ear Hear 23:28S–40S

    Article  Google Scholar 

  16. Wanna GB, O’Connell BP, Francis DO et al (2018) Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope 128:482–489. https://doi.org/10.1002/lary.26714

    Article  PubMed  Google Scholar 

  17. Richard C, Fayad JN, Doherty J, Linthicum FH (2012) Round window versus cochleostomy technique in cochlear implantation: histologic findings. Otol Neurotol 33:1181–1187. https://doi.org/10.1097/MAO.0b013e318263d56d

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sikka K, Kairo A, Singh CA et al (2017) An evaluation of the surgical trauma to intracochlear structures after insertion of cochlear implant electrode arrays: a comparison by round window and antero-inferior cochleostomy techniques. Indian J Otolaryngol Head Neck Surg 69:375–379. https://doi.org/10.1007/s12070-017-1143-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Xie L, Wang Y, Yang B (2019) Lower initial electrode impedances in minimally invasive cochlear implantation. Acta Otolaryngol 139:389–395. https://doi.org/10.1080/00016489.2019.1571285

    Article  PubMed  Google Scholar 

  20. Cheng X, Wang B, Liu Y et al (2018) Comparable electrode impedance and speech perception at 12 months after cochlear implantation using round window versus cochleostomy: an analysis of 40 patients. ORL 80:248–258. https://doi.org/10.1159/000490764

    Article  PubMed  Google Scholar 

  21. Jeong J, Kim M, Heo JH et al (2015) Intraindividual comparison of psychophysical parameters between perimodiolar and lateral-type electrode arrays in patients with bilateral cochlear implants. Otol Neurotol 36:228–234. https://doi.org/10.1097/MAO.0000000000000672

    Article  PubMed  Google Scholar 

  22. Gordin A, Papsin B, James A, Gordon K (2009) Evolution of cochlear implant arrays result in changes in behavioral and physiological responses in children. Otol Neurotol 30:908–915. https://doi.org/10.1097/MAO.0b013e3181b236b0

    Article  PubMed  Google Scholar 

  23. Telmesani LM, Said NM (2015) Effect of cochlear implant electrode array design on auditory nerve and behavioral response in children. Int J Pediatr Otorhinolaryngol 79:660–665. https://doi.org/10.1016/j.ijporl.2015.02.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. No funding was received for this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarowski, A., Molisz, A., Mylanus, E.A.M. et al. Comparison of electrophysiological parameters between perimodiolar and lateral wall electrodes in paediatric cochlear implant users. Eur Arch Otorhinolaryngol 277, 2693–2699 (2020). https://doi.org/10.1007/s00405-020-05927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-05927-7

Keywords

Navigation