Skip to main content
Log in

An improved method for examining fat taste

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

The detection of fat taste in humans requires the delivery of hydrophobic stimuli to the oral cavity. Due to their low solubility in water, these fat taste stimuli are difficult to administer to test subjects by means of aqueous solutions or dispersions. These hydrophobic stimuli are also difficult to prepare in sufficient amounts to generate an appreciable chemosensory response.

Methods

An improved procedure for preparing thin edible strips that contain 18-carbon fatty acids as representative fat taste stimuli is described. This protocol includes the addition of low amounts of the dispersing agent xanthan gum and high drying temperature during film formation. These edible strips can be prepared in 4–5 h, are highly flexible, and evenly disperse long-chain fatty acids at micromole amounts. Due to the rapid dissolving time of these strips in the oral cavity, this delivery method generates minimal tactile responses.

Results

Psychophysical studies with edible strips indicate that nearly all individuals detected linoleic acid, with intensity responses in the weak to moderate range. Fewer individuals perceived stearic acid, with most intensity responses in the barely detectable range. Both fatty acids caused a fatty/oily or bitter taste response in the majority of test subjects. Finally, these intensity responses allowed the development of edible circles for regional testing of the tongue.

Conclusion

This novel delivery method for hydrophobic stimuli should be useful for examining human fat taste perception, characterizing variations in fat taste perception, and identifying the emerging role of fat taste in human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drewnowski A, Almiron-Roig E (2010) Human perceptions and preferences for fat-rich foods. In: Montmayeur JP, Le Coutre J (eds) Fat detection: taste, texture, and post ingestive effects. CRC Press/Taylor & Francis, Boca Raton, pp 265–293. https://doi.org/10.1201/9781420067767

    Chapter  Google Scholar 

  2. Drewnowski A (1997) Why do we like fat? J Am Diet Assoc 97(7 Suppl):S58–S62. https://doi.org/10.1016/S0002-8223(97)00732-3

    Article  CAS  PubMed  Google Scholar 

  3. Subramaniam S, Ozdener MH, Abdoul-Azize S, Saito K, Malik B et al (2016) ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J 30:3489–3500. https://doi.org/10.1096/fj.201600422R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schiffman SS, Graham BG, Sattely-Miller EA, Warwick ZS (1998) Orosensory perception of dietary fat. Curr Dir Psychol Sci 7:137–143. https://doi.org/10.1111/1467-8721.ep10836808

    Article  Google Scholar 

  5. Keast RS, Costanzo A (2015) Is fat the sixth primary? Evidence and implications. Flavour 4:5–11. https://doi.org/10.1186/2044-7248-4-5

    Article  Google Scholar 

  6. Stewart JE, Newman LP, Keast RS (2011) Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr 30:838–844. https://doi.org/10.1016/j.clnu.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  7. Mela DJ, Sacchetti DA (1991) Sensory preferences for fats: relationships with diet and body composition. Am J Clin Nutr 53:908–915. https://doi.org/10.1093/ajcn/53.4.908

    Article  CAS  PubMed  Google Scholar 

  8. Tucker RM, Kaiser KA, Parman MA, George BJ, Allison DB, Mattes RD (2017) Comparisons of fatty acid taste detection thresholds in people who are lean vs. overweight or obese: a systematic review and meta-analysis. PLoS ONE 12(1):e0169583. https://doi.org/10.1371/journal.pone.0169583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattes RD (2011) Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav 104:624–631. https://doi.org/10.1016/j.physbeh.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbertson TA, Fontenot DT, Liu L, Zhang H, Monroe WT (1997) Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am J Physiol 272:C1203–1210. https://doi.org/10.1152/ajpcell.1997.272.4.C1203

    Article  CAS  PubMed  Google Scholar 

  11. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R et al (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30:8376–8382. https://doi.org/10.1523/JNEUROSCI.0496-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ancel D, Bernard A, Subramaniam S, Hirasawa A, Tsujimoto G et al (2015) The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice. J Lipid Res 56:369–378. https://doi.org/10.1194/jlr.M055202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace P et al (2008) The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22:1458–1468. https://doi.org/10.1096/fj.07-8415com

    Article  CAS  PubMed  Google Scholar 

  14. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M et al (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184. https://doi.org/10.1172/JCI25299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simons PJ, Kummer JA, Luiken JJ, Boon L (2011) Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 113:839–843. https://doi.org/10.1016/j.acthis.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  16. Burgess B, Melis M, Scoular K, Driver M, Schaich KM et al (2018) Effects of CD36 genotype on oral perception of oleic acid supplemented safflower oil emulsions in two ethnic groups: a preliminary study. J Food Sci 83:1373–1380. https://doi.org/10.1111/1750-3841.14115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Yassimi A, Hichami A, Besnard P, Khan NA (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 283:12949–12959. https://doi.org/10.1074/jbc.M707478200

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton JA, Johnson RA, Corkey B, Kamp F (2001) Fatty acid transport. The diffusion mechanism in model and biological membranes. J Mol Neurosci 16:99–108. https://doi.org/10.1385/JMN:16:2-3:99

    Article  CAS  PubMed  Google Scholar 

  19. Mattes RD (2009) Is there a fatty acid taste? Ann Rev Nutr 29:305–327. https://doi.org/10.1146/annurev-nutr-080508-141108

    Article  CAS  Google Scholar 

  20. Ebba S, Abarintos RA, Kim DG, Tiyouh M, Stull JC et al (2012) The examination of fatty acid taste with edible strips. Physiol Behav 106:579–586. https://doi.org/10.1016/j.physbeh.2012.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Panickar KS, Bhathena SJ (2010) Control of fatty acid intake and the role of essential fatty acids in cognitive function and neurological disorders. In: Montmayeur JP, Le Coutre J (eds) Fat detection: taste, texture, and post ingestive effects. CRC Press/Taylor & Francis, Boca Raton, pp 463–484

    Google Scholar 

  22. Garneau NL, Nuessle TM, Tucker RM, Yao M, Santorico SA, Mattes RD (2017) Taste responses to linoleic acid: a crowdsourced population study. Chem Senses 42:769–775. https://doi.org/10.1093/chemse/bjx058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tucker RM, Nuessle TM, Garneau NL, Smutzer G, Mattes RD (2015) No difference in perceived intensity of linoleic acid in the oral cavity between obese and nonobese individuals. Chem Senses 40:557–563. https://doi.org/10.1093/chemse/bjv040

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kennedy JF, Bradshaw IJ (1984) Production, properties and applications of xanthan. Prog Ind Microbiol 19:319–371

    CAS  Google Scholar 

  25. Running CA, Mattes RD (2015) Humans are more sensitive to the taste of linoleic and α-linolenic than oleic acid. Am J Physiol Gastrointest Liver Physiol 308:G442–G449. https://doi.org/10.1152/ajpgi.00394.2014

    Article  CAS  PubMed  Google Scholar 

  26. Yevlampieva NP, Pavlov GM, Rjumtsev EI (1999) Flow birefringence of xanthan and other polysaccharide solutions. Int J Biol Macromol 26:295–301. https://doi.org/10.1016/S0141-8130(99)00096-3

    Article  CAS  PubMed  Google Scholar 

  27. Imagi J, Yamanouchi T, Okada K, Tanimoto M, Matsuno R (1992) Properties of agents that effectively entrap liquid lipids. Biosci Biotechnol Biochem 56:477–480. https://doi.org/10.1271/bbb.56.477

    Article  CAS  PubMed  Google Scholar 

  28. Feng Z, Qi J, Huang Z, Xie X, Wei N, Lu T (2017) Optimization of the amount and molecular weight of dispersing agent PEG during the co-precipitation preparation of nano-crystalline C-YSZ powder. J Nanosci Nanotechnol 17:2613–2619. https://doi.org/10.1166/jnn.2017.12690

    Article  CAS  PubMed  Google Scholar 

  29. Smutzer G, Lam S, Hastings L, Desai H, Abarintos RA, Sobel M, Sayed N (2008) A test for measuring gustatory function. Laryngoscope 118:1411–1416. https://doi.org/10.1097/MLG.0b013e31817709a0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schiffman SS (2018) Influence of medications on taste and smell. World J Otorhinolaryngol Head Neck Surg 4:84–91. https://doi.org/10.1016/j.wjorl.2018.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Doty RL, Treem J, Tourbier I, Mirza N (2009) A double-blind study of the influences of eszopiclone on dysgeusia and taste function. Pharmacol Biochem Behav 94:312–318. https://doi.org/10.1016/j.pbb.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  32. Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW et al (2004) Valid across-group comparisons with labeled scales: the gLMS versus magnitude matching. Physiol Behav 82:109–114. https://doi.org/10.1016/j.physbeh.2004.02.033

    Article  CAS  PubMed  Google Scholar 

  33. Duffy VB, Peterson JM, Bartoshuk LM (2004) Associations between taste genetics, oral sensation and alcohol intake. Physiol Behav 82:435–445. https://doi.org/10.1016/j.physbeh.2004.04.060

    Article  CAS  PubMed  Google Scholar 

  34. Arabintos RA, Jimenez JC, Tucker RM, Smutzer G (2019) Development of a regional taste test that uses edible circles for stimulus delivery. Chemosens Perc. https://doi.org/10.1007/s12078-019-09265-9

    Article  Google Scholar 

  35. Colvin JL, Pullicin AJ, Lim J (2018) Regional differences in taste responsiveness: effect of stimulus and tasting mode. Chem Senses 43:645–653. https://doi.org/10.1093/chemse/bjy055

    Article  CAS  PubMed  Google Scholar 

  36. Nasrawi CW, Pangborn RM (1989) The influence of tastants on oral irritation by capsaicin. J Sens Stud 3:287–294. https://doi.org/10.1111/j.1745-459X.1989.tb00451.x

    Article  Google Scholar 

  37. Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185. https://doi.org/10.1016/0031-9384(78)90070-7

    Article  CAS  PubMed  Google Scholar 

  38. Khan AS, Murtaza B, Hichami A, Khan NA (2019) A cross-talk between fat and bitter taste modalities. Biochimie 159:3–8. https://doi.org/10.1016/j.biochi.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  39. Love-Gregory L, Abumrad NA (2011) CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care 14:527–534. https://doi.org/10.1097/MCO.0b013e32834bbac9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mattes RD (2009) Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 34:145–150. https://doi.org/10.1093/chemse/bjn072

    Article  CAS  PubMed  Google Scholar 

  41. Kamphuis MM, Saris WH, Westerterp-Plantenga MS (2003) The effect of addition of linoleic acid on food intake regulation in linoleic acid tasters and linoleic acid non-tasters. Br J Nutr 90:199–206. https://doi.org/10.1079/BJN2003858

    Article  CAS  PubMed  Google Scholar 

  42. Iwami K, Hattori T, Yasumi T, Ibuki F (1988) Stability of gliadin-encapsulated unsaturated fatty acids against autoxidation. J Agric Food Chem 36:160–164. https://doi.org/10.1021/jf00079a041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a Targeted Small Grant Award from Temple University and support from the Temple University Undergraduate Research Program. The authors thank Robin Tucker, Angelica Sotelo, and Edward Gruberg for valuable discussions. A detailed protocol for preparing fatty acid strips is available by contacting the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Smutzer.

Ethics declarations

Conflict of interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical standards

All protocols performed in this study were in accordance with ethical standards of the sponsoring university’s institutional review board. Informed consent was obtained from all subjects who participated in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smutzer, G., Alvarado, J.J., Haggard, D.Z. et al. An improved method for examining fat taste. Eur Arch Otorhinolaryngol 277, 151–160 (2020). https://doi.org/10.1007/s00405-019-05685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-019-05685-1

Keywords

Navigation